
BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Want to learn how to program on your Mac? Not sure where to begin?
Best-selling author Wallace Wang will explain how to get started with

Cocoa, Objective-C, and Xcode. Whether you are an experienced Windows
coder moving to the Mac or you are completely new to programming, you’ll
see how the basic design of a Mac OS X program works, how Objective-C
differs from other languages you may have used, and how to use the Xcode
development environment. Most importantly, you’ll learn how to use ele-
ments of the Cocoa framework to create windows, store data, and respond to
users in your own Mac programs.

If you want to learn how to develop apps with Cocoa, Objective-C, and Xcode,
this book is a great first step to getting started.

Here are just a few of the things you’ll master along the way:
• Fundamental programming concepts aided by short,
 easy-to-understand examples
• How to use Xcode and related programming tools to save time and
 work more efficiently
• A firm understanding of the basics of Objective-C and how it compares
 to other languages you might know
• How to create simple apps using the Cocoa framework
• How to easily design, write, test, and market your finished program

With this book and your trusty Mac, you’re well on your way to transforming
your Mac app ideas into real applications.

Mac Programming
for Absolute Beginners

Wallace Wang

Get started with Objective-C,Cocoa,
and Xcode on the Mac

www.it-ebooks.info

http://www.it-ebooks.info/

 i

Mac Programming for
Absolute Beginners

■ ■ ■

Wallace Wang

www.it-ebooks.info

http://www.it-ebooks.info/

ii

Mac Programming for Absolute Beginners

Copyright © 2011 by Wallace Wang

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3336-7
ISBN-13 (electronic): 978-1-4302-3337-4

Printed and bound in the United States of America (POD)

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Michelle Lowman
Development Editor: Jim Markham
Technical Reviewer: James Bucanek
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan

Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank
Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom
Welsh

Coordinating Editor: Jennifer L. Blackwell
Copy Editors: Kim Wimpsett and Bill McManus
Compositor: MacPS, LLC
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

www.it-ebooks.info

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com
http://www.it-ebooks.info/

 iii

This book is dedicated to all those dreamers who just needed a helping hand to turn
their great ideas into a working program.

www.it-ebooks.info

http://www.it-ebooks.info/

iv

Contents at a Glance

■Contents .. v
■About the Author ... xii
■About the Technical Reviewer .. xiii
■Acknowledgments ... xiv
■Introduction .. xv
■Chapter 1: Understanding Programming ... 1
■Chapter 2: Understanding Apple’s Programming Tools 17
■Chapter 3: The Basic Steps to Creating a Mac Program 29
■Chapter 4: Getting Help ... 47
■Chapter 5: Learning Objective-C .. 63
■Chapter 6: Making Decisions with Branches ... 83
■Chapter 7: Repeating Code with Loops .. 99
■Chapter 8: Understanding the Cocoa Framework .. 111
■Chapter 9: Manipulating Strings ... 123
■Chapter 10: Arrays .. 139
■Chapter 11: Dictionaries and Sets ... 157
■Chapter 12: Creating Classes and Objects .. 173
■Chapter 13: Inheritance, Method Overriding, and Events 203
■Chapter 14: Creating a User Interface ... 215
■Chapter 15: Choosing Commands with Buttons .. 231
■Chapter 16: Making Choices with Radio Buttons and Check Boxes 249
■Chapter 17: Making Choices with Pop-Up Buttons 263
■Chapter 18: Inputting and Outputting Data with Labels,
 Text Fields, and Combo Boxes ... 279
■Chapter 19: Inputting Data with Sliders, Date Pickers, and Steppers 299
■Chapter 20: Using Built-In Dialog Boxes ... 315
■Chapter 21: Creating Pull-Down Menus .. 331
■Chapter 22: Designing Your Own Programs .. 343
■Chapter 23: Working with Xcode ... 361
■Chapter 24: Debugging Your Program ... 371
■Index .. 385

www.it-ebooks.info

http://www.it-ebooks.info/

 v

Contents

■Contents at a Glance ... iv
■About the Author ... xii
■About the Technical Reviewer .. xiii
■Acknowledgments ... xiv
■Introduction .. xv

■Chapter 1: Understanding Programming ... 1

Programming Principles ... 2
Dividing Programs into Parts ... 5
Event-Driven Programming .. 7
Object-Oriented Programming ... 8

Understanding Programming Languages ... 11
The Building Blocks of Programming Languages .. 12
Programming Frameworks ... 13
Mac Programming Today ... 14

Summary .. 16

■Chapter 2: Understanding Apple’s Programming Tools 17
Understanding Editors .. 17
Understanding Xcode .. 18

Deciphering the Xcode User Interface ... 19
Running Xcode ... 20
Creating a New Project in Xcode ... 21
Examining Project Files in Xcode ... 24
Compiling a Program ... 26

Summary .. 27

■Chapter 3: The Basic Steps to Creating a Mac Program 29
A Bare-Bones Program Example ... 30
A Simple User Interface Example .. 33
An Interactive User Interface Example .. 37

Writing Objective-C Code ... 38
Connecting the User Interface ... 40

www.it-ebooks.info

http://www.it-ebooks.info/

■ CONTENTS

vi

An Advanced Interactive User Interface Example ... 42
Summary .. 45

■Chapter 4: Getting Help ... 47
Installing Help Topics .. 47
Getting Help About Xcode ... 48
Getting Help About Core Library .. 49
Searching for Help .. 54
Getting Quick Help .. 55
Viewing Documentation for Selected Text .. 56
Getting Help with Library Windows ... 57
Help While Writing Code ... 59

Color-Coding .. 59
Customizing the Editor ... 60
Using Code Completion .. 60

Summary .. 61

■Chapter 5: Learning Objective-C .. 63
Differences in Writing a Mac Objective-C Program .. 63
Understanding Objective-C Symbols .. 65

Defining the End of Each Line with a Semicolon ... 66
Defining the Beginning and End of Code with Curly Brackets ... 67
Defining Compiler Directives with the # Symbol ... 68
Defining Comments with // .. 68
Identifying Objects with [and] .. 69
Defining Pointers with * ... 70

Manipulating Data with Variables ... 71
Declaring Variables .. 71
Assigning Data to a Variable .. 73
The Scope of a Variable ... 73
A Program Example Using Variables .. 75

Using Constants .. 76
Using Mathematical Operators ... 78
Using Strings ... 79
Summary .. 81

■Chapter 6: Making Decisions with Branches ... 83
Understanding Boolean Expressions .. 84

Boolean Comparison Operators ... 86
Boolean Logical Operators ... 87

Branches ... 90
The Simplest if Statement ... 90
Following Multiple Instructions in an if Statement .. 91
The if-else Statement .. 92
The if-else if Statement ... 92
The switch Statement .. 94

Summary .. 98

■Chapter 7: Repeating Code with Loops .. 99
Loops That Run a Fixed Number of Times .. 100

Quitting a for Loop Prematurely ... 102

www.it-ebooks.info

http://www.it-ebooks.info/

■ CONTENTS

 vii

Skipping in a for Loop .. 103
Loops That Run Zero or More Times ... 104

The while Loop ... 104
The do-while Loop ... 105
Quitting a while or do-while Loop Prematurely ... 106
Skipping a while or do-while Loop .. 107

Nested Loops .. 107
Summary .. 109

■Chapter 8: Understanding the Cocoa Framework .. 111
An Overview of How Object-Oriented Programming Works .. 112

Starting with a Class .. 113
Reducing Bugs ... 114
Reusing Code ... 114
Defining Classes .. 114

Creating an Object .. 115
Storing Data in an Object .. 116
A Sample Program for Manipulating Objects .. 117
Looking Up Method and Property Names for NS Classes ... 118
Summary .. 121

■Chapter 9: Manipulating Strings ... 123
Declaring a String Variable ... 123
Getting the Length of a String ... 124
Comparing Two Strings .. 125
Checking for Prefixes and Suffixes ... 125
Converting to Uppercase and Lowercase ... 126
Converting Strings to Numbers ... 127
Searching for a Substring ... 129

The location Field ... 129
The length Field ... 129

Searching and Replacing .. 130
Replacing Part of a String at a Specific Location ... 130
Searching for and Replacing Part of a String .. 132

Deleting Part of a String .. 133
Extracting a Substring .. 134

Extracting a Substring with a Location and Length ... 134
Extracting a Substring to the End of a String ... 135

Appending a Substring .. 136
Inserting a String .. 137
Summary .. 138

■Chapter 10: Arrays .. 139
Creating an Array .. 140

Finding the Right Method to Use .. 141
Storing Objects in an Array .. 143
Additional Methods for Filling an Array .. 145

Counting the Items Stored in an Array .. 145
Accessing an Item in an Array .. 146
Accessing All Items in an Array .. 147

www.it-ebooks.info

http://www.it-ebooks.info/

■ CONTENTS

viii

Adding Items to an Array .. 149
Inserting Items into an Array .. 151
Deleting Items from an Array .. 152

Deleting the Last Item in an Array ... 152
Deleting an Item from a Specific Index Position .. 152
Deleting Every Item from an Array ... 153
Deleting All Instances of an Item from an Array .. 153

Summary .. 155

■Chapter 11: Dictionaries and Sets ... 157
Dictionary Basics .. 157
Creating and Putting Data in a Dictionary ... 158
Counting the Items Stored in a Dictionary .. 159
Retrieving an Item from a Dictionary .. 160
Deleting Data from a Dictionary .. 161
Copying a Dictionary ... 162
Copying Dictionary Data Into an Array .. 163
Sorting Keys .. 164
Access All Items in a Dictionary .. 165
Using Sets ... 166
Creating and Putting Data in a Set .. 166
Counting the Number of Items in a Set ... 167
Checking Whether Data Is in a Set ... 167
Adding and Removing Data in a Set ... 168
Accessing All Items in a Set .. 169
Getting the Intersection of Two Sets ... 170
Identifying a Subset of a Set ... 170
Summary .. 172

■Chapter 12: Creating Classes and Objects .. 173
Creating a Class .. 174
Understanding the Code in a Class ... 176
Deleting Class Files ... 177
A Program Example of a Class .. 178
Creating Methods .. 180

Passing Parameters ... 183
Returning Values from a Method ... 188
Passing by Reference .. 192

Creating Class Properties ... 195
Defining Properties .. 196
Accessing and Getting Values in Properties .. 197

Summary .. 200

■Chapter 13: Inheritance, Method Overriding, and Events 203
Object Inheritance ... 203
Method Overriding .. 207
Responding to Events ... 209

Understanding the Application Delegate .. 210
Summary .. 214

www.it-ebooks.info

http://www.it-ebooks.info/

■ CONTENTS

 ix

■Chapter 14: Creating a User Interface ... 215
Getting to Know Interface Builder ... 215

Creating a New User Interface .xib File ... 216
Understanding the Parts of a .XIB File .. 218

Placeholder Objects ... 219
Interface Objects .. 219
Toggling the View of Placeholder and Interface Objects ... 220

Designing a User Interface .. 221
Customizing User Interface Objects .. 226

Moving and Resizing User Interface Objects ... 226
Autosizing and Anchoring User Interface Objects .. 227

Summary .. 229

■Chapter 15: Choosing Commands with Buttons .. 231
Creating a Button .. 232
Creating a Button Title .. 235
Adding a Graphic Image .. 237
Customizing the Visual Behavior of a Button .. 239
Making Buttons Easier to Use ... 240

Creating Tooltips .. 240
Adding Sound ... 241
Choosing a Button with a Keystroke Combination ... 241

Connecting a Button to an IBAction .. 242
Alternate Dragging Option ... 245

Breaking a Link to an IBAction Method ... 246
Summary .. 248

■Chapter 16: Making Choices with Radio Buttons and Check Boxes 249
Radio Buttons .. 250

Creating and Adding Radio Buttons ... 250
Creating a Radio Button Title ... 253
Defining a Radio Button’s State ... 253

Determining Which Radio Button a User Selected .. 253
Check Boxes ... 257

Creating Check Boxes .. 257
Defining a Check Box’s Title and State .. 259

Summary .. 262

■Chapter 17: Making Choices with Pop-Up Buttons 263
Pop-Up Button Basics ... 263
Creating a Pop-Up Button List in Interface Builder ... 266

Adding (and Deleting) Items on a Pop-Up Button List .. 267
Renaming an Item in a Pop-Up Button List .. 270

Modifying a Pop-Up Button’s List with Code ... 270
Determining What a User Selected ... 274
Summary .. 277

■Chapter 18: Inputting and Outputting Data with Labels,
 Text Fields, and Combo Boxes ... 279

Using Labels ... 279

www.it-ebooks.info

http://www.it-ebooks.info/

■ CONTENTS

x

Adding a Label to Your User Interface ... 280
Editing Text on a Label ... 281

Using Text Fields ... 287
Adding a Text Field to Your User Interface ... 287
Editing Text in a Text Field ... 289
Retrieving Data from a Text Field .. 289

Using Combo Boxes .. 290
Adding a Combo Box to Your User Interface .. 290
Creating a List for a Combo Box .. 292
Retrieving a Value from a Combo Box ... 292

Wrapping Labels and Text Fields .. 295
Summary .. 296

■Chapter 19: Inputting Data with Sliders, Date Pickers, and Steppers 299
Using Sliders ... 300

Defining Values .. 301
Displaying Tick Marks .. 302
Retrieving and Displaying a Slider’s Value .. 303

Using a Date Picker ... 305
Retrieving a Date from a Date Picker ... 308

Using Steppers .. 310
Summary .. 314

■Chapter 20: Using Built-In Dialog Boxes ... 315
Using Alert Dialog Boxes ... 315

Displaying Text on a Dialog Box ... 317
Displaying a Suppression Check Box ... 317
Displaying Buttons on a Dialog Box ... 318

Creating an Open Panel .. 321
Limiting File Types ... 325
Allowing Multiple File Selections ... 325

Creating a Save Panel ... 327
Limiting File Types ... 329

Summary .. 329

■Chapter 21: Creating Pull-Down Menus .. 331
Editing Pull-Down Menus .. 331

Editing a Menu or Menu Item ... 332
Moving a Menu or Menu Item .. 333
Deleting Menus and Menu Items ... 335
Creating New Menus and Menu Items ... 335

Linking Menu Commands ... 339
Assigning Keystrokes to a Menu Item ... 341
Summary .. 342

■Chapter 22: Designing Your Own Programs .. 343
Identifying the Right Problem ... 344
What Programs Do Well .. 344
Designing the Program Structure ... 345

The Model .. 346
The Controller .. 346

■ CONTENTS

 xi

The View .. 346
Be Conventional ... 348
Be Imitative .. 349
Be Unusual ... 350

Thinking in Objects ... 351
Picking a Data Structure .. 352
Creating an Algorithm .. 353
Defining an Algorithm .. 354
Writing Pseudocode ... 355
Writing Actual Code ... 355
Prototyping Your Program .. 357
Writing and Testing Your Program ... 358

Summary .. 359

■Chapter 23: Working with Xcode ... 361
Creating New Folders ... 361
Fast Navigation Shortcuts ... 362

Using the File History Pop-Up Button ... 363
Using the Properties and Methods Pop-Up Button .. 364
Using the Classes Menu ... 365
Using the Include Menu ... 365
Switching Between the .h File and .m File .. 366

Making Code Easier to Read ... 366
Folding (or Unfolding) All Methods and Functions ... 367
Folding (or Unfolding) a Single Block of Code .. 367
Folding (or Unfolding) a Block of Comments .. 367
Unfolding Everything .. 368

Splitting the Xcode Window .. 368
Summary .. 369

■Chapter 24: Debugging Your Program ... 371
Debugging a Program ... 371

Syntax Errors ... 372
Logic Errors .. 374
Run-Time Errors ... 375

Viewing Problems When Debugging ... 375
Simple Debugging Tips ... 376

Comment Out Your Code .. 376
Check the Value of Variables with NSLog .. 377

Using Breakpoints When Debugging ... 377
Placing (and Removing) a Breakpoint .. 377
Using the Debugger ... 378
Stepping Through Code ... 379

Summary .. 382

■Index .. 385

■ INTRODUCTION

xii

About the Author

Wallace Wang is a former Windows enthusiast who took one look at Vista and
realized that the future of computing belonged to the Macintosh. He’s written
more than 40 computer books including Microsoft Office for Dummies,
Beginning Programming for Dummies, Steal This Computer Book, My New
Mac, and My New iPad. In addition to programming the Macintosh and
iPhone/iPad, he also performs stand-up comedy, having appeared on A&E’s
Evening at the Improv as well as having performed in Las Vegas at the Riviera
Comedy Club at the Riviera Hotel & Casino.

When he’s not writing computer books or performing stand-up comedy, he
also enjoys blogging about screenwriting at his site The 15 Minute Movie Method
(www.15minutemoviemethod.com) where he shares screenwriting tips with other aspiring
screenwriters who all share the goal of breaking into Hollywood.

http://www.15minutemoviemethod.com

■ CONTENTS

 xiii

About the Technical
Reviewer

James Bucanek has spent the past 30 years programming and developing
microcomputer systems. He has experience with a broad range of
technologies, from embedded consumer products to industrial robotics.
James is currently focused on Macintosh and iOS software development.
When not programming, James indulges in his love of food and fine arts. He
earned an aassociate’s degree from the Royal Academy of Dance in classical
ballet and can occasionally be found teaching at Adams Ballet Academy.

■ INTRODUCTION

xiv

Acknowledgments

This book would never have been written without the help of all the wonderful people at Apress
who worked to make sure this book could be the best beginner’s tutorial for novice Macintosh
programmers. A big round of thanks goes to Michelle Lowman, Jim Markham, Kim Wimpsett, Bill
McManus, Jennifer L. Blackwell, and James Bucanek for keeping this project on track and making
it fun at the same time.

Another big round of thanks goes to Bill Gladstone and Margot Hutchison at Waterside
Productions for always looking out for new opportunities in the book publishing and computer
industry.

Thanks also goes to all the stand-up comedians I’ve met, who have made those horrible crowds at
comedy clubs more bearable: Darrell Joyce (http://darrelljoyce.com), Leo “the Man, the Myth,
the Legend” Fontaine, Chris Clobber, Bob Zany (www.bobzany.com), Russ Rivas
(http://russrivas.com), Doug James, Don Learned, Dante, and Dobie “The Uranus King”
Maxwell (www.dobiemaxwell.com). Another round of thanks goes to Steve Schirripa (who appeared
in HBO’s hit show The Sopranos) for giving me my break in performing at the Riviera Hotel and
Casino in Las Vegas, one of the few old-time casinos left that hasn’t been imploded (yet) to make
room for another luxury hotel and casino designed to take money away from people unable to
calculate the odds so heavily stacked against them.

Finally, I’d like to acknowledge Cassandra (my wife), Jordan (my son), and Nuit (my cat) along
with Loons the parrot and Ollie the parakeet. They didn’t help write this book one bit, but their
presence has made the process of writing this book much more bearable.

http://darrelljoyce.com
http://www.bobzany.com
http://russrivas.com
http://www.dobiemaxwell.com

■ CONTENTS

 xv

Introduction

If you’re an experienced programmer, a beginner just learning to program, or a complete novice
who knows nothing about programming at all, this book is for you. No matter what your skill level
may be, you can learn how to write programs for the Macintosh starting today.

What makes programming for the Macintosh so appealing is that the programming tools are
free (courtesy of Apple), and by learning the basics of programming the Macintosh, you can easily
apply your skills and experience to programming the iPhone, iPod touch, and iPad as well.
Although this book focuses on programming the Macintosh, what you learn here can build a solid
foundation to help you take the next step toward writing your own iPhone/iPod touch/iPad apps
in the future.

The introduction of a new computer platform has always ushered in new (and lucrative)
opportunities for programmers. In the early 1980s, the hottest platform was the Apple II
computer. If you wanted to make money writing programs, you wrote programs to sell to Apple II
computer owners, such as Dan Bricklin did, an MBA graduate student at the time, when he wrote
the first spreadsheet program, VisiCalc.

Then the next big computing platform occurred in the mid-1980s with the IBM PC and MS-
DOS. People made fortunes off the IBM PC including Bill Gates and Microsoft, which went from a
small, startup company to the most dominant computer company in the world. The IBM PC
made millionaires out of hundreds of people including Scott Cook, a former marketing director at
Proctor & Gamble, who developed the popular money manager program, Quicken.

Microsoft helped usher in the next computer platform when it shifted from MS-DOS to
Windows and put a friendly graphical user interface on IBM PCs. Once again, programming
Windows became the number-one way that programmers and nonprogrammers alike made
fortunes by writing and selling their own Windows programs. Microsoft took advantage of the
shift to Windows by releasing several Windows-only programs that have become fixtures of the
business world such as Outlook, Access, Word, PowerPoint, and Excel.

Now with the growing market for Apple products, thousands of people, just like you, are
eager to start writing programs to take advantage of the Macintosh’s rising market share along
with the dominant position of the iPhone and the iPad in the smartphone and tablet categories.

Besides experienced developers, amateurs, hobbyists, and professionals in other fields are
also interested in writing their own games, utilities, and business software specific to their
particular niche.

Many programmers have gone from knowing nothing about programming to earning
thousands of dollars a day by creating useful and frivolous iPhone/iPad apps or Macintosh
programs. As the Macintosh, iPhone, and iPad continue gaining market share and adding new
features, more people will use one or more of these products, increasing the potential market for
you.

All this means that it’s a perfect time for you to start learning how to program your
Macintosh right now, because the sooner you understand the basics of Macintosh programming,
the sooner you can start creating your own Macintosh programs or iPhone/iPad apps.

■ INTRODUCTION

xvi

Code Conventions Used in This Book
Most of this book prints text in the font you're reading right now. However, you'll run across text
formatted in different ways. To make it easy to tell the difference between explanatory text and
actual programming instructions, you may see a different font like this:

NSString *newString;

This type of text highlights code that you can examine or type in. This font also highlights
messages you may see on your screen.

Throughout this book, you'll be typing in sample programs. Sometimes you'll only need to
modify part of an existing sample program, so to emphasize the new code you need to type in,
you may see bold text like this:

NSString *newString;
newString = [largeString substringWithRange: NSMakeRange(5, 4)];

The bold text emphasizes the new code you need to add while the non-bold text represents
the existing code you can leave alone. By seeing the existing code, you can easily see where you
need to add any new code.

What to Expect from This Book
There are plenty of programming books on the market, but what makes this book different is that
it assumes you’re a complete novice with a great idea for a program but don’t know the first step
for getting started. For that reason, this book will minimize all the technical jargon about
Objective-C, Xcode 3.2, and Cocoa frameworks and instead focus on helping you achieve specific
tasks such as displaying a command button or accepting text from the user.

Of course, you will eventually need to know what Objective-C, Xcode, and the Cocoa
frameworks can do, but you won’t get buried in a lot of technical jargon. Since this book starts
you at the very beginning, it also won’t contain detailed technical information needed to create
super-sophisticated programs that involve graphics or sound. If you just want to get started and
learn the basics of programming using Apple’s programming tools, this book is for you. If you’re
already an experienced Windows programmer and want to get started programming the
Macintosh, this book can be especially helpful in teaching you the basics of using Apple’s
programming tools in a hurry.

If you’ve never programmed before in your life or if you’re already familiar with
programming but not with Macintosh programming, then this book is for you. Even if you’re
experienced with Macintosh programming, you may still find this book handy as a reference to
help you achieve certain results without having to wade through several books to find an answer.

To help you learn the different principles behind Macintosh programming, this book also
provides plenty of short example programs that you can run and study. Because each sample
program is so short, you’ll be able to focus just on learning a new feature of programming while
reducing the possibility of typos and other errors. As a result, you’re more likely to get each short
sample program working right away, which can increase your confidence and enjoyment as you
learn how to program.

You won’t learn everything you need to know to create your own programs, but you’ll learn
just enough to get started, feel comfortable, and be able to tackle other programming books with
more confidence and understanding. Fair enough? If so, then turn the page and let’s get started.

1

1

 Chapter

Understanding
Programming
Programming is nothing more than writing instructions for a computer to follow. If you’ve
ever written down the steps for a recipe or scribbled driving directions on the back of an
envelope, you’ve already gone through the basic steps of writing a program. The key is
simply knowing what you want to accomplish and then making sure you write the
correct instructions that will achieve that goal.

Although programming is theoretically simple, it’s the details that can trip you up. First,
you need to know exactly what you want. If you wanted a recipe for cooking chicken
chow mein, following a recipe for cooking baked salmon won’t do you any good.

Second, you need to write down every instruction necessary to get you from your
starting point to your desired result. If you skip a step or write steps out of order, you
won’t get the same result. Try driving to a restaurant where your list of driving
instructions omits telling you when to turn on a specific road. It doesn’t matter if 99
percent of the instructions are right; if just one instruction is wrong, you won’t get you to
your desired goal.

The simpler your goal, the easier it will be to achieve. Writing a program that displays a
calculator on the screen is far simpler than writing a program to monitor the safety
systems of a nuclear power plant. The more complex your program, the more
instructions you’ll need to write, and the more instructions you need to write, the greater
the chance you’ll forget an instruction, write an instruction incorrectly, or write
instructions in the wrong order.

Programming is nothing more than a way to control a computer to solve a problem,
whether that computer is a laptop, mobile phone, or tablet device. Before you can start
writing your own programs, you need to understand the basic principles of programming
in the first place.

1

CHAPTER 1: Understanding Programming 2

Programming Principles
To write a program, you have to write instructions that the computer can follow. No
matter what a program does or how big it may be, every program in the world consists
of nothing more than step-by-step instructions for the computer to follow, one at a time.
The simplest program can consist of a single line:

PRINT "Hello, world!"

NOTE: The sample code in this part of the chapter uses the BASIC programming language to
make programming concepts easier to understand. What you'll be learning later in this book is a
different programming language called Objective-C, which is a bit harder to understand than

BASIC.

Obviously, a program that consists of a single line won’t be able to do much, so most
programs consist of multiples lines of instructions (or code):

PRINT "Hello, world!"
PRINT "Now the program is done."

This two-line program starts with the first line, follows the instructions on the second
line, and then stops. Of course, you can keep adding more instructions to a program
until you have a million instructions that the computer can follow sequentially, one at a
time.

Listing instructions sequentially is the basis for programming, but it’s not always the
best way to organize instructions. For example, if you wanted to print the same message
five times, you could use the following:

PRINT "Hello, world!"
PRINT "Hello, world!"
PRINT "Hello, world!"
PRINT "Hello, world!"
PRINT "Hello, world!"

Writing the same five instructions is tedious and redundant, but it works. What happens
if you wanted to print this same message 1,000 times? Then you’d have to write the
same instruction 1,000 times.

Writing the same instruction multiple times is clumsy. To make programming easier, you
really want to write the least number of instructions that get the most work done. One
way to avoid writing the same instruction multiple times is to organize your instructions
using something called a loop.

The idea behind a loop is to repeat one or more instructions multiple times, but only by
writing those instructions down once. A typical loop might look like this:

FOR I = 1 TO 5
 PRINT "Hello, world!"
END FOR

CHAPTER 1: Understanding Programming 3

The first instruction tells the computer to repeat the loop five times. The second
instruction tells the computer to print the message “Hello, world!” on the screen. The
third instruction just defines the end of the loop.

Now if you wanted to make the computer print a message 1,000 times, you don’t need
to write the same instruction 1,000 times. Instead, you just need to modify how many
times the loop repeats:

FOR I = 1 TO 1000
 PRINT "Hello, world!"
END FOR

Although loops are slightly more confusing to read and understand than a sequential
series of instructions, loops make it easier to repeat instructions without writing the
same instructions multiple times.

Most programs don’t exclusively list instructions sequentially or in loops, but they use a
combination of both:

PRINT "Getting ready to print."
PRINT "Program is now starting."
FOR I = 1 TO 1000
 PRINT "Hello, world!"
END FOR

In this example, the computer follows the first two lines sequentially and then follows the
last three instructions repetitively in a loop. Generally, listing instructions sequentially is
fine when you need the computer to follow those instructions only once. When you need
the computer to run instructions multiple times, that’s when you need to use a loop.

What makes computers powerful isn’t just the ability to follow instructions sequentially
or in a loop, but in making decisions. Decisions mean that the computer needs to
evaluate some condition and then, based on that condition, decide what to do next.

For example, you might write a program that locks someone out of a computer until that
person types the correct password. If the person types the correct password, then the
program needs to give that person access. However, if the person types an incorrect
password, then the program needs to block access to the computer. An example of this
type of decision making might look like this:

ASK "Enter the password:", Password
IF Password = "OPEN" THEN
 Grant access to the computer
ELSE
 Block access to the computer

In this example, the computer asks for a password, and when the user types a
password, the computer checks to see whether it matches the word OPEN. If the user
typed OPEN, then the computer grants that person access to the computer. If the user
did not type OPEN, then the computer blocks access.

Making decisions is what makes programming flexible. If you write a sequential series of
instructions, the computer will follow those lists of instructions exactly the same way,

CHAPTER 1: Understanding Programming 4

every time. However, if you include decision-making instructions, also known as
branching instructions, then the computer can respond according to what the user does.

Consider a video game. No video game could be written entirely with instructions
organized sequentially because then the game would play exactly the same way every
time. Instead, a video game needs to adapt to the player’s actions at all times. If the
player moves an object to the left, the video game needs to respond differently than if
the player moves an object to the right or gets killed. Using branching instructions gives
computers the ability to react differently so the program never runs exactly the same.

To write a computer program, you need to organize instructions in one of the following
three ways, as shown in Figure 1–1:

 Sequentially: The computer follows instructions one after another.

 Loop: The computer repetitively follows one or more instructions.

 Branching: The computer chooses to follow one or more groups of
instructions based on outside data.

Figure 1–1. The three basic building blocks of programming

Although simple programs may organize instructions only sequentially, every large
program organizes instructions sequentially, in loops, and in branches. What makes
programming more of an art and less of a science is that there is no single best way to
write a program. In fact, it’s perfectly possible to write two different programs that
behave the same.

Because there is no single “right” way to write a program, there are only guidelines to
help you write programs easily. Ultimately what matters is only that you write a program
that works.

When writing any program, there are two, often mutually exclusive, goals. First,
programmers strive to write programs that are easy to read, understand, and modify.
This often means writing multiple instructions that clearly define the steps needed to
solve a particular problem.

CHAPTER 1: Understanding Programming 5

Second, programmers try to write programs that perform tasks efficiently, making the
program run as fast as possible. This often means condensing multiple instructions as
much as possible, using tricks, or exploiting little known features that are difficult to
understand and confusing even to most other programmers.

In the beginning, strive toward making your programs as clear, logical, and
understandable as possible, even if you have to write more instructions or type longer
instructions to do it. Later, as you gain more experience in programming, you can work
on creating the smallest, fastest, most efficient programs possible, but remember that
your ultimate goal is to write programs that just work.

Dividing Programs into Parts
Since small programs have fewer instructions, they are much easier to read, understand,
and modify. Unfortunately, small programs can solve only small problems. To solve
complicated problems, you need to write bigger programs with more instructions. The
more instructions you type, the greater the chance you’ll make a mistake (called a bug).
Even worse is that the larger a program gets, the harder it can be to understand how it
works in order to modify it later.

To avoid writing a single, massive program, programmers simply divide a large program
into smaller parts called subprograms. The idea is that each subprogram solves a single
problem. Connect all of these subprograms together, and you can create a single large
program, as shown in Figure 1–2. This is like building a house out of bricks rather than
trying to carve an entire house out of one massive rock.

Figure 1–2. Dividing a large program into multiple subprograms

Dividing a large program into smaller parts provides several benefits. First, writing
smaller subprograms is fast and easy, and small subprograms make it easy to read,
understand, and modify the instructions.

Second, subprograms act like building blocks that work together, so multiple
programmers can work on different subprograms and then combine their separate
subprograms to create a large program.

Third, if you want to modify a large program, you just need to yank out, rewrite, and
replace one or more subprograms. Without subprograms, modifying a large program

CHAPTER 1: Understanding Programming 6

means wading through all the instructions stored in a large program and trying to find
which instructions you need to change.

A fourth benefit of subprograms is that if you write a useful subprogram, you can plug
that subprogram into other programs, thereby reducing the need to write everything
from scratch.

When you divide a large program into multiple subprograms, you have a choice. You
can store all your programs in a single file, or you can store each subprogram in a
separate file, as shown in Figure 1–3.

Figure 1–3. You can store subprograms in one file or in multiple files.

Storing all your subprograms in a single file makes it easy to find and modify any part of
your program. However, the larger your program, the more instructions you’ll need to
write, which can make searching through a single large file as clumsy as flipping through
the pages of a dictionary.

Storing all your subprograms in separate files means you need to keep track of which
files contain which subprogram. However, the benefit is that modifying a subprogram is
much easier because once you open the correct file, you see the instructions for only a
single subprogram, not for a dozen or more other subprograms.

To write any program, most programmers divide a large program into subprograms and
store those subprograms in separate files.

CHAPTER 1: Understanding Programming 7

Event-Driven Programming
In the early days of computers, most programs forced people to use a program by
typing one command at a time. For example, if you had a program that calculated the
trajectory of a rocket, the program might first ask you the destination followed by the
rocket’s size, weight, and position from the target. If you wanted to type in the rocket’s
weight before typing in the rocket’s height, the program wouldn’t let you because such
programs tightly controlled how the computer behaved at any given time.

All of this changed when computers started displaying windows and pull-down menus
so users could choose what to do at any given time. Suddenly every program had to
wait for the user to do something such as selecting one of many available menu
commands. Since the user could do multiple actions such as typing or clicking the
mouse, programs had to constantly wait for the user to do something before reacting.

Every time the user did something, that was considered an event. If the user clicked the
left mouse button, that was a completely different event than if the user clicked the right
mouse button. Instead of dictating what the user could do at any given time, programs
now had to respond to different events that the user did. Such programs came to be
known as event-driven programming.

Instead of following instructions from start to finish, event-driven programs divided a
large program into multiple subprograms where each subprogram responded to a
different event. If the user clicked the left mouse, the subprogram that handled left
mouse clicks would run its instructions. If the user clicked the right mouse, the
subprogram that handled right mouse clicks would run its instructions.

With event-driven programming, a large program might be divided into multiple
subprograms where some of those subprograms contained instructions that ran only
when a certain event occurred, as shown in Figure 1–4.

Figure 1–4. Programs can be divided into subprograms that respond to specific events.

CHAPTER 1: Understanding Programming 8

Object-Oriented Programming
Dividing a large program into multiple subprograms made it easy to create and modify a
program. However, trying to understand how such a large program worked often proved
confusing since there was no simple way to determine which subprograms worked
together or what overall task they were meant to solve.

To solve this problem, programmers grouped related subprograms and data in a single
location. By using this grouped collection of subprograms and data, programmers could
create objects, which represent a single element of the problem you’re trying to solve.

Instead of focusing on different tasks, object-oriented programming often focuses on
mimicking objects in the real world. An object-oriented video game program might
divide a program into objects such as monsters, the player character, and other moving
items such as falling boulders.

Each object would contain subprograms for manipulating that object along with data
that defines the characteristics of that object, such as its location on the screen or the
color of the item to display on the screen.

One idea behind object-oriented programming is to divide a large program into logical
objects that mimic the physical problem you’re trying to solve. So rather than write a
bunch of subprograms that break a problem into individual tasks, object-oriented
programming divides a problem into physical parts.

Suppose you need to write a program for controlling a robot. Dividing this problem into
tasks, you might create one subprogram to move the robot, a second subprogram to tell
the robot how to see nearby obstacles, and a third subprogram to calculate the best
path to follow.

Dividing this same robot program into objects might create a Legs object (for moving the
robot), an Eye object for seeing nearby obstacles, and a Brain object (for calculating the
best path to avoid obstacles), as shown in Figure 1–5.

A second idea behind object-oriented programming is to make it easy to reuse and
modify a large program. Suppose we replace our robot’s legs with treads. Now we’d
have to modify the subprogram for moving the robot since treads behave differently
than legs. Next, we’d have to modify the subprogram for calculating the best path
around obstacles since treads force a robot to go around obstacles, while legs allow a
robot to walk over small obstacles and go around larger obstacles.

If you wanted to replace a robot’s legs with treads, object-oriented programming would
simply allow you to yank out the Legs object and replace it with a new Treads object,
without affecting or needing to modify any additional objects.

CHAPTER 1: Understanding Programming 9

Figure 1–5. How subprograms and objects might divide a program into parts

The Brain object wouldn’t need to change since it needs to tell the Treads object only
where to move, not how to move. Since most programs are constantly modified to fix
bugs or add new features, object-oriented programming allows you to create a large
program out of separate building blocks (objects) and modify a program by modifying
only a single object.

The key to object-oriented programming is to isolate parts of a program and promote
reusability through three features known as encapsulation, inheritance, and
polymorphism.

Encapsulation
The biggest problem with dividing a large program into subprograms is that one
subprogram can often access and change data that another subprogram uses. If this
happens, then the entire program might not work, and trying to track down the source of
the problem can be nearly impossible because you have to exhaustively examine all
your subprograms.

CHAPTER 1: Understanding Programming 10

To avoid this problem, object-oriented programming encapsulates, or hides, data inside
an object. Each object contains both the data it needs and the subprograms allowed to
manipulate that data, as shown in Figure 1–6.

Figure 1–6. Objects group related subprograms and data together.

Encapsulation simply eliminates the risk that an unrelated part of a program can change
data used by another subprogram.

Polymorphism
When you divide a large program into subprograms, each subprogram needs a unique
name. Normally this won’t cause any problems, but sometimes you may need to create
subprograms that perform similar tasks.

For example, suppose you’re creating a video game where the player controls a car and
the computer controls a monster throwing rocks at the car. To make the car, monster,
and rocks move on the screen, you might want to create a subprogram named Move.

Unfortunately, a car needs to move differently on the screen than a monster or a thrown
rock. You could create three subprograms and name them MoveCar, MoveMonster, and
MoveRock. However, a simpler solution is to just give all three subprograms the same
name such as Move.

In traditional programming, you can never give the same name to two or more
subprograms since the computer would never know which subprogram you want to run.
However, in object-oriented programming, you can use duplicate subprogram names
because of polymorphism.

The reason why polymorphism works is because each Move subprogram gets stored in a
separate object such as one object that represents the car, a second object that
represents the monster, and a third object that represents a thrown rock. To run each
Move subprogram, you must identify the object that contains the Move subprogram you
want to use:

CHAPTER 1: Understanding Programming 11

Car.Move
Monster.Move
Rock.Move

By identifying both the object that you want to manipulate and the subprogram that you
want to use, object-oriented programming can correctly identify which set of
instructions to run even though a subprogram has the identical name to another
subprogram.

Essentially, polymorphism lets you create descriptive subprogram names and reuse that
descriptive name as often as you like.

Inheritance
If you create a particularly useful subprogram, you might want to reuse that subprogram
again. The simple answer is to make a copy of a subprogram and modify this copy.

The problem with copying subprograms is that you now have two or more identical
copies of the same subprogram stored in different locations. Such duplication not only
wastes space but, more importantly, can cause problems if you need to modify the
original subprogram.

Suppose you create a useful subprogram and then make five different copies to use in
other parts of your program, with minor modifications made to each additional
subprogram copy. Now what happens if you find an error in your original subprogram?
Fixing that one subprogram will be fairly straightforward, but now you have to fix that
same error five more times in each of the five additional copies you made earlier.

Inheritance eliminates this problem because instead of forcing a programmer to create
duplicate, physical copies of a subprogram, inheritance creates virtual copies of a
subprogram. The original instructions remain in one physical location, but multiple
objects can now access those instructions whenever they need them.

Think of inheritance like the difference between text in a printed book and text on a web
page. Only one person can read a printed book at a time. If multiple people want to read
that same book, you’ll need to make physical copies.

However, text on a web page can be accessed by multiple people, even though there’s
only one copy of that text stored on a single computer.

The main idea behind inheritance is to make it easy to reuse parts of your program
without creating duplicate copies.

Understanding Programming Languages
Once you understand how programming has gradually evolved and how Mac
programming requires understanding all of these different programming techniques,
you’re almost ready to start programming. Next, you need to know that giving
instructions to a computer involves writing commands using a programming language.

CHAPTER 1: Understanding Programming 12

There are thousands of different programming languages with names like FORTH, Ada,
BASIC, C#, Prolog, and Modula-3. However, the programming language you’ll be
learning in this book is called Objective-C.

Currently, one of the most popular programming language is C. Two huge advantages of
C are its efficiency and its portability. Efficiency means that programs written in C are
extremely small and run fast. Portability means that almost every computer in the world
understands C. As a result,you can write a program in C and copy it to a different
operating system, such as taking a C program for Windows and copying it to a
Macintosh. You'll need to rewrite the C code to create a user interface that's unique to
each operating system, but a large portion of your program's C code can remain intact
with little or no modifications at all.

Since C is an old programming language, it lacks object-oriented programming features,
which makes C unsuitable for creating and maintaining large programs. One popular
variation of C is called C++, which adds object-oriented programming features. Although
C++ is popular, Objective-C also offers object-oriented features and is much simpler
and thus easier to learn.

To write Mac programs, you can use any programming langauge, although the most
popular ones are C, C++, and Objective-C. However, Apple has officially endorsed
Objective-C as the main programming language for the Mac, so if you’re going to learn
how to program the Mac, your best choice is to learn and use Objective-C.

NOTE: If you already know C or C++, you’ll find that Objective-C is similar enough that you can
learn it quickly. If you don’t know any programming language at all, Objective-C may look a bit

cryptic at first, but after you use it for a while, you’ll soon understand how it works.

The Building Blocks of Programming Languages
Every programming language consists of special commands that are part of the
language. These commands tell the computer to do something:

PRINT

In this example, PRINT represents a command that tells the computer to print something
on the screen. By themselves, commands usually won’t do anything interesting, so you
have to combine commands with additional data to create a single instruction or a
statement. A statement simply tells the computer to do something useful:

PRINT "This is a message from your computer"

Learning a programming language means learning the right commands so you can tell the
computer what to do, such as print a message on the screen or add two numbers together.

To make programming as easy as possible, many programming languages use
commands that look like ordinary English words such as PRINT, Writeln, or printf.

CHAPTER 1: Understanding Programming 13

However, many programming languages also use symbols that represent different
features.

Sometimes a symbol represents a command to make the computer do something.
Common symbols are mathematical symbols for addition (+), subtraction (-),
multiplication (*), and division (/).

Other times symbols are meant to define the beginning or end of something:

int age;

or

[super init]

Some programming languages rely almost exclusively on commands to make the
instructions more readable:

BEGIN
 Writeln ('This is a message');
END;

Other programming languages, such as Objective-C, tend to rely more on symbols to
make writing a program faster, but with the drawback that the statements tend to look
more cryptic:

{
 printf ("This is a message");
}

Unlike human languages where you can misspell a word or forget to end a sentence with
a period and people can still understand what you’re saying, programming languages
are not so forgiving. With a programming language, every command must be spelled
correctly, and every symbol must be used where needed. Misspell a single command,
use the wrong symbol, or put the right symbol in the wrong place, and your entire
program will fail to work.

Programming Frameworks
Commands (and symbols) let you give a computer instructions, but no programming
language can provide every possible command you might need to create all types of
programs. To provide additional commands, programmers can create subprograms that
perform a specific task.

Programmers can even create bigger subprograms out of commands and smaller
subprograms. By creating subprograms, you can create your own commands needed to
make the computer do exactly what you need.

Programmers often create subprograms unique to their particular program. However,
many programmers have also created useful subprograms that provide features that
other programmers might find useful. As a result, many programming languages include
libraries of these other subprograms. Now when you write a program, you can use the
programming language’s commands and any subprograms stored in libraries.

CHAPTER 1: Understanding Programming 14

One library might contain subprograms for displaying graphics. Another library might
contain subprograms for saving data to a disk and retrieving it again. Still another library
might contain subprograms for calculating mathematical formulas. By using commands
to create subprograms, programmers can create an endless variety of additional
building blocks for making any type of program.

To make programming the Mac, iPhone, and iPad easier, Apple has created libraries or
frameworks of useful subprograms that you can use in your own programs.

There are two reasons for reusing an existing framework. First, reusing a framework
keeps you from having to write your own instructions to accomplish a task that
somebody else has already solved. Not only does a framework provide a ready-made
solution, but a framework has also been tested by others, so you can just use the
framework and be assured that it will work correctly.

A second reason to use an existing framework is for consistency. Apple provides
frameworks for defining the appearance of a program on the screen, known as the user
interface. This defines how a program should behave, from displaying windows on the
screen to letting you resize or close a window by clicking the mouse.

It’s perfectly possible to write your own instructions for displaying windows on the
screen, but chances are good that writing your own instructions would take time to
create and test, and the end result would be windows that may not look or behave
identically as other Mac programs.

However, by reusing an existing framework, you can create your own program quickly
and ensure that your program behaves the same way that other programs behave.
Although programming the Mac might sound complicated, Apple provides dozens of
different frameworks that help you create programs quickly and easily. All you have to
do is write the custom instructions that make your program solve a specific, unique
problem.

Mac Programming Today
Almost every program consists of three parts: a user interface, a controller, and a model.
The user interface displays windows and menus to show information and let the user
choose commands. The model contains instructions for accepting data, manipulating it
somehow, and calculating a new result. The controller takes data from the user interface
and feeds it into the model. Then it takes the newly calculated result from the model and
sends it back to the user interface, as shown in Figure 1–7.

CHAPTER 1: Understanding Programming 15

Figure 1–7. The three parts of a typical program

Here’s the hard way to write a Mac program. First, use the commands in Objective-C to
create your user interface. After you spend time writing multiple instructions to create
your user interface, you need to test it to make sure it works.

Second, use Objective-C commands to create the model for accepting data,
manipulating it somehow, and calculating a new result. Now spend more time testing
these instructions to make sure they work.

Third, use Objective-C commands to create the controller to link the user interface to the
model. Now spend more time making sure the controller works correctly with the user
interface and the model.

In the old-fashioned way of programming, you had to write three separate chunks of
instructions to create the user interface, controller, and model, and then you’d test each
chunk separately to make sure they worked. Finally, you had to put all three chunks of
instructions together and test everything again to make sure it all worked together.

Such a process is obviously tedious, error-prone, and slow. Since you have to create
everything from scratch using Objective-C commands, this can feel like trying to build a
wall by pasting together individual granules of sand.

Here’s the faster way to write a Mac program, which is what you’ll be learning in this
book. Instead of creating everything from scratch, you’ll just need to focus on writing
instructions that calculate a useful result. By focusing on writing instructions to create
the model portion of your program, you’re essentially simplifying the amount of
programming work you need to do.

First, every time you create a new program, you’ll get to choose from a template. A
template provides the basic skeleton of a user interface that can display windows and
pull-down menus found in most programs.

Since the template already provides the Objective-C commands for creating a user
interface, you can spend your time customizing this user interface. Ordinarily,
customizing the user interface would mean writing Objective-C instructions, but Apple
provides a special tool that lets you design your user interface by dragging and dropping
items on the screen such as buttons and text fields.

CHAPTER 1: Understanding Programming 16

By eliminating the need to write a separate set of instructions for designing your user
interface, you’ll only need to write instructions to make your program do something
useful. Even better, you won’t have to waste time testing your user interface because
there are no Objective-C instructions to examine since everything just works, so your
program looks and behaves exactly like other Mac programs.

To create the controller and model portions of your program, you’ll need to write
instructions in Objective-C. Rather than rely on commands alone, you can save time by
using subprograms stored in frameworks provided by Apple. By using these
frameworks, you can use subprograms that have already been tested for accomplishing
a variety of complicated tasks such as saving a file.

To respond to the actions of the user, you’ll need to organize your instructions into
subprograms that run only when certain events occur, such as when the user clicks the
mouse. To further help you organize your program, you can create objects using
Objective-C’s object-oriented features.

The end result is that writing a Mac program eliminates as much of the tedious part of
programming as possible, freeing you to focus only on the creative part that makes your
program unique.

Although this may sound like a lot of information to master just to write a Mac program,
don’t worry. From program templates to drag-and-drop user interface designs to
frameworks, Apple streamlines the programming process so you can create a fully
functioning program with a minimum of effort.

Summary
To learn how to write programs for the Mac, you need to learn three separate skills.
First, you need to understand the basic principles of programming. That includes
organizing instructions in sequences, loops, or branches.

Second, you need to learn a specific programming language. For the Mac, you’ll be
learning Objective-C. Objective-C is designed more for program efficiency and less for
human readability, which means that writing and reading Objective-C instructions can
look cryptic at times.

Third, you need to know how to use Apple’s programming tools for writing Objective-C
instructions and how to use Apple’s frameworks so you can focus solely on writing
instructions that make your program work (which you’ll learn more about in Chapter 2).

Once you learn how to program the Mac, you can easily use your skill to write programs
for the iPhone, iPod touch, and iPad as well. Whether you want to write your own
software to sell or you want to sell your programming skills to create custom software
for others, you’ll find that programming is a skill anyone can learn.

Programming is nothing more than problem solving using a particular programming
language. By knowing how to solve problems using Objective-C, you can create your
own programs for the Mac much easier and far faster than you might think.

17

17

 Chapter

Understanding Apple’s
Programming Tools
To write a program, you need at least two tools: an editor and a compiler. An editor acts
like a word processor and lets you write instructions using a programming language
such as Objective-C. A compiler converts your instructions (called code) and compiles
(or translates) them into a language that computers can understand, which is called
machine code. When you buy a program, that program is stored in a file that contains
nothing but machine code.

Every time you run a program on your computer, whether it’s a word processor or a web
browser, you’re using a program that someone wrote in an editor using a programming
language and converted into machine code using a compiler.

Understanding Editors
To create a program, you’ll need to write, save, and edit instructions (your code) using a
programming language such as Objective-C. In the early days of programming, an editor
(also called a text editor) looked and behaved like a word processor, but without the
need for fancy formatting commands. After you edited and saved a program in an editor,
you had to exit the editor and run a compiler to test whether your program worked.

If your program didn’t work, you had to load your editor again, open the file that you
saved your instructions in, make any changes, and save the file once more. Then you
had to run the compiler once again.

This process of constantly loading and exiting from the editor and compiler wasted time.
The more time you wasted switching back and forth between your editor and your
compiler, the less time you had to work on your program.

To fix this problem, computer scientists created a special program called an integrated
development environment (IDE). The idea behind an IDE is that you need to load a single
programming tool only once. You can write, edit, and save your program in the IDE and

2

CHAPTER 2: Understanding Apple’s Programming Tools 18

then compile it without having to exit the editor and load the compiler since everything is
integrated in a single program.

Besides making programming faster and easier, IDEs had a second benefit. If you ran a
compiler separately from the editor and your program had an error or bug in it, the
compiler could identify the line in your program only where the error occurred. To fix this
problem, you had to load your editor again, open your program, and move the cursor to
the line where the error occurred so you could fix it. Once again, this process wasted
time.

Since an IDE never forces you to quit and load a separate program, the moment the
compiler discovers a bug in your program, it can highlight that error in the editor so you
can fix it right away. An IDE simply combines the features of multiple tools into a single
program.

To write programs for the Mac, you’ll be using two free tools provided by Apple called
Xcode and Interface Builder. Xcode combines the features of an editor and a compiler
(along with other tools) so you’ll be able to create and edit programs written in
Objective-C. Interface Builder lets you visually design your program’s user interface. By
using both Xcode and Interface Builder, you’ll be able to design your user interface and
connect it to your Objective-C code to make the whole thing work.

Understanding Xcode
To write Mac programs, you have to use Xcode, which you can download for free from
the Apple Developer Center site (http://developer.apple.com). The first time you see
Xcode, it might look intimidating because of all the menu commands, windows, and
icons that appear everywhere. The idea of trying to master every feature of Xcode can
be as intimidating as learning to fly for the first time by stepping in the cockpit of a 747
jumbo jet.

NOTE: Interface Builder is a program bundled with Xcode, so when you download Xcode from

Apple’s developer’s site, you get both Interface Builder and Xcode in the same file.

Don’t worry. Although Xcode provides hundreds of options and features, you don’t have
to learn them all right away, or even at all. To write a Mac program, you only need to
learn how to use a handful of features. Later as you get more experienced with Mac
programming, you can take advantage of Xcode’s other features, but only when you’re
ready.

The three basic uses for Xcode are as follows:

 Creating and editing Objective-C code

 Creating and modifying your program’s user interface

 Running and testing your program

http://developer.apple.com

CHAPTER 2: Understanding Apple’s Programming Tools 19

Before you can start writing Mac programs, you need to understand how to use Xcode.
The first task is to learn and understand the Xcode user interface. The second task is to
learn how and when to use different features of Xcode when writing your own program.

Deciphering the Xcode User Interface
Unlike other types of programs you may have used before, such as a word processor or
web browser, Xcode lets you customize the user interface to display only the information
you want at any given time. This makes Xcode flexible enough for everyone but also
means that one copy of Xcode can look wildly different than another copy of Xcode.

The part of Xcode that always remains the same is its pull-down menus, which consists
of the following:

 File: Commands for creating, opening, saving, and printing your
programs

 Edit: Commands for copying, deleting, and moving items when writing
code in Objective-C or when designing your program’s user interface

 View: Commands for hiding or displaying icons or windows that
display additional information

 Product: Commands for compiling and testing your program

 Build: Commands for compiling your programs

 Run: Commands for testing and debugging your program

 Window: Commands for manipulating Xcode’s windows that may
display additional commands

 Help: Commands for getting help using Xcode or writing Objective-C
code

In addition to commands stored on pull-down menus, Xcode also offers numerous icons
that display different types of information. Since these icons are small and not always
intuitive as to what they do, most icons duplicate commands already available through
the pull-down menus. The idea is that once you get used to using different commands
regularly, you may find it faster to click an icon that performs the same function, rather
than constantly going through the pull-down menus over and over again.

The main part of Xcode consists of multiple windows that appear stacked or side by
side. Windows display different information about your program, so by moving, closing,
or resizing a different window, you can change what type of information you want to see.

These three parts of Xcode (pull-down menus, icons, and panes) provide you with the
tools you need to create, edit, and run your programs, as shown in Figure 2–1.

CHAPTER 2: Understanding Apple’s Programming Tools 20

Figure 2–1. The Xcode user interface consists of pull-down menus, icons, and panes.

Running Xcode
When you install most programs on your Mac, such as Microsoft Word or iTunes, that
program appears in the Applications folder. However, when you install Xcode on your
computer, it usually appears in a special Developer folder.

To locate Xcode on your Mac, follow these steps:

1. Open the Finder window.

2. Click your hard disk icon (usually called Macintosh HD) located under the

DEVICES category.

3. Choose View ➤ as List. A list of folders appears in the right pane of the Finder

window.

4. Click the gray arrow that appears to the left of the Developer folder. A list of files

and folders inside this Developer folder appears.

CHAPTER 2: Understanding Apple’s Programming Tools 21

5. Click the gray arrow that appears to the left of the Applications folder. The Xcode

icon appears as one of many files stored in the Applications folder, as shown in

Figure 2–2.

Figure 2–2. Finding Xcode on a Mac

NOTE: To make finding and running Xcode easier in the future, you may want to drag the Xcode

icon onto the Dock. This will give you one-click access to starting Xcode whenever you need it.

Creating a New Project in Xcode
In the early days of programming, most programs were fairly small so they could easily
fit into a single file. As programs grew larger and more complicated, programmers
started to store different parts of a program in separate files. Each file represented a
different part of a program, and all the files taken as a whole were called a project. A
project file simply keeps track of all the files needed to create a single program.

To create a new Mac program, you have to create a new project. There are two ways to
create a new project. First, when you start Xcode, a dialog box appears, letting you
open an existing project or create a new product, as shown in Figure 2–3.

CHAPTER 2: Understanding Apple’s Programming Tools 22

Figure 2–3. The opening Xcode dialog box lets you choose between creating a new project or opening an existing
one.

If you’ve already started Xcode, a second way to create a new project is to choose File
➤ New Project or press N. No matter how you choose to create a new project,
Xcode displays a dialog box with different templates you can choose. The two groups of
available templates are organized between the iPhone OS and Mac OS X.

If you want to create an iPhone/iPad app, you’d choose a template under the iPhone OS
category. If you want to create a Mac program, you’d choose a template under the Mac
OS X category, which displays different types of templates, as shown in Figure 2–4:

 Application: Creates a Mac OS X program, which is the template you’ll
use most often.

 Framework & Library: Creates your own framework of useful code that
you can reuse in different programs. (This option is for advanced Mac
programmers.)

 Application Plug-In: Creates small programs designed to work with
existing applications such as the Address Book. (This option is for
advanced Mac programmers.)

 System Plug-In: Creates small programs designed to work with the
Mac OS X operating system. (This option is for advanced Mac
programmers.)

CHAPTER 2: Understanding Apple’s Programming Tools 23

 Other: Creates a completely blank file so you’ll have to create
everything from scratch. (This option is for advanced Mac
programmers.)

Figure 2–4. To create a new program, you must choose a template.

When you select the Application template, Xcode gives you the option of creating four
types of applications:

 Cocoa Application: Creates the most common type of Mac OS X
applications.

 Cocoa-Applescript Application: Creates an application based on the
AppleScript programming language. (This option is for advanced Mac
programmers.)

 Quartz Composer Application: Uses a visual programming language
for processing and rendering graphical data. (This option is for
advanced Mac programmers.)

CHAPTER 2: Understanding Apple’s Programming Tools 24

 Command Line Tool: Creates an application without the standard Mac
OS X user interface. (This option is for advanced Mac programmers.)

In this book, you’ll only be using the Application template to create Cocoa applications,
which creates typical Mac OS X programs. When you create a Mac OS X program, you’ll
also have the option of selecting a “Create document-based application” or “Use Core
Data for storage” check box. The “Create document-based application” option lets you
open multiple windows to display different files, such as a word processor displaying
multiple documents. The “Use Core Data for storage” option lets you use a special data
management framework for storing data. For the purposes of this book, you can ignore
these two options since they’re designed for creating more sophisticated programs.

NOTE: Cocoa is the name of Apple’s framework to help you create Mac OS X programs. An older
version of Apple’s frameworks is called Carbon, which was designed to help programmers

transition their programs from OS 9 to Mac OS X. Most new Mac programs rely on the Cocoa
framework rather than the Carbon framework. If you hear people talking about Cocoa

programming, they’re just talking about Mac OS X programming using the Cocoa framework.

After you choose the Cocoa Application template, Xcode will ask for the name of your
project. Type a descriptive name for your project, and click the Next button.

A Save dialog box appears, letting you name your project and choose the drive and
folder to store your Xcode project. Select a folder, type a name (such as Test), and click
the Save button. The Xcode window appears.

Examining Project Files in Xcode
When you choose a program template, Xcode creates a bare-bones, working program for
you. To view the Objective-C code that your template already contains, you can click the
list of folders displayed in the left pane of the Xcode window, as shown in Figure 2–5.

CHAPTER 2: Understanding Apple’s Programming Tools 25

Figure 2–5. Every Xcode project consists of multiple files organized in separate folders.

You can actually put any file in any folder, regardless of the folder’s name. However, it’s
a good idea to keep files stored in specific folders based on their purpose, which are as
follows:

 Classes: Holds the files that contain Objective-C code.

 Other Sources: Holds Objective-C files necessary for creating your
program, but you’ll almost never need to look at, let alone edit, any of
the files stored in this folder.

 Resources: Holds files containing information about your program as
well as files (named xib files) that define your user interface.

 Frameworks: Lists all the frameworks that your program uses when it
runs.

 Products: Holds the actual program file that you can give to others.

To view the contents of any folder, click the gray arrow (called a disclosure triangle) that
appears to the left of that folder. To hide the contents of any folder, click the gray
downward-pointing arrow to the left of that folder.

CHAPTER 2: Understanding Apple’s Programming Tools 26

The two folders you’ll open and add files to most often are the Classes and Resources
folders. The Classes folder holds all your Objective-C code, while the Resources folder
holds all your user interface files.

Each time you select a file within a folder, Xcode displays the contents of that file in the
middle window. If you open the Classes folder and click a file stored in that folder, you’ll
see a file containing Objective-C code.

If you now open the Resources folder and click the MainMenu.xib file, you’ll see the user
interface for your program, which will initially be blank.

NOTE: User interface files have the file extension of .xib, which stands for Xcode Interface
Builder. User interface files are also called nib files, which stands for NeXT Interface Builder.
NeXT stands for NeXTSTEP, which is the operating system that Apple used to create Mac OS X.

Apple simply improved the NeXT Interface Builder program and renamed it Interface Builder.

Compiling a Program
When you create a new Xcode project and choose a template such as the Cocoa
Applications template, Xcode creates a skeleton program. Without writing a single
Objective-C command, your Xcode project already contains enough code to
create a bare-bones user interface that consists of pull-down menus and
windows that you can move, resize, close, or open.

To compile and run an Xcode project, you need to choose the Build and Run
command, which you can choose by doing one of the following:

 Click the Build and Run icon.

 Choose Build ➤ Build and Run.

 Press Return.

If you choose the Build and Run command to compile and run a program, based
on the Cocoa Applications template, you’ll see that program’s pull-down menus
plus a window on the screen, as shown in Figure 2–6.

CHAPTER 2: Understanding Apple’s Programming Tools 27

Figure 2–6. The Cocoa Applications template creates a program with a simple user interface.

Click any of the pull-down menus, and move or resize the window. Notice that
your program behaves like a typical Mac OS X program, and you haven’t even
written a single line of Objective-C code yet. When you chose to use a Cocoa
Applications template, Xcode created a skeleton Mac OS X program that already
knows how to work. All you have to do is provide the custom instructions to make
the program solve your specific task. When you’re done toying with your Mac OS
X program, choose the Quit command just as you would do in any Mac OS X
program.

By using program templates, you can create a working program without writing a
single line of code whatsoever. This is one of the ways that Xcode makes Mac
programming easy for you.

Summary
To write Mac programs, you’ll be spending most of your time using Xcode. With Xcode,
you can write and edit Objective-C code, design a user interface, and run your program
to make sure it works or fix problems if it doesn’t work.

Just remember that you don’t need to learn every feature in Xcode to start using it. Just
as staring at all the instruments crammed into the cockpit of a 747 jumbo jet might seem
intimidating, so might Xcode’s initial appearance frighten you with its apparent
complexity. Just focus on the features you’ll need and use the most, and ignore those
features you don’t need until you eventually understand and want to use them.

CHAPTER 2: Understanding Apple’s Programming Tools 28

Xcode is your primary tool for creating Mac programs, so you’ll be spending a lot of time
using this program. The more you use Xcode, the more comfortable and familiar the
program will get. Pretty soon you’ll find yourself spending more of your time using
Xcode and less of your time trying to figure out how to do something useful with it.

This chapter is meant as an introduction to Xcode so you know what you’re looking at
and the purpose of each feature. In the next chapter, you’ll actually use Xcode to create
small programs that can give you a taste of what Mac programming is really all about.

29

29

 Chapter

The Basic Steps to
Creating a Mac Program
The two basic steps needed to create a Mac program involve designing your user

interface and writing Objective-C code to make your program actually do something.

Although you can design your user interface first and then write your Objective-C code

(or vice versa), it’s more likely that you’ll switch between both tasks as you gradually add

features to your program. Before you start writing a program, the most important first

step is to decide what you want your program to do and how you want it to look. Take a

moment, sit down with a pencil and paper, and decide exactly what you want your

program to do.

Once you know what you want your program to do, you’ll know what type of data it

needs and how it needs to manipulate that data to create the desired result. After you

know this crucial information, you can sketch out the user interface to accept data and

display a useful result to the user.

These are the four basic steps needed to create any program:

1. Design the user interface.

2. Write code to make your program do something.

3. Connect your user interface to your code so your user interface can control your

code and your code can display information to the user interface.

4. Test and debug your program until it finally works.

In this chapter, we’ll focus on the first three, with an emphasis on connecting your user

interface to your code in a succeeding version of a sample program. Just remember that

there is no best way to create any program. Throughout this book you’ll see sample

programs, but these programs could have been written a million different ways. The

purpose of these sample programs is to show you the basic principles of how different

features of Mac programming work. Once you understand these principles, you’ll be

able to use them to write your own programs.

3

CHAPTER 3: The Basic Steps to Creating a Mac Program 30

To learn any programming languages, most programmers start by creating a simple

“Hello, world!” program, which displays the message “Hello, world!” on the screen. So,

we’ll start with one such example before addressing the basic steps. The purpose of

such a simple program is to show how a complete (but short) program works in a

particular programming language and how that specific language uses different methods

to display data to the user.

A Bare-Bones Program Example
Creating a typical “Hello, world!” program can show you three important parts about

Mac programming.

NOTE: Chapter 5 will go into more detail about writing Objective-C code. For right now, the
Objective-C code you’ll create in this chapter will be simple enough that you’ll be able to type
them without necessarily understanding how they work, although you’ll be able to figure out

what they do.

First, you’ll learn how to use Objective-C to display a message. Second, you’ll learn how

a Mac program can run commands based on an event that occurs. Finally, you’ll start

getting familiar with the basic steps and commands needed to create a program using

Xcode.

To create your first real Mac program, follow these steps:

1. Create a new project in Xcode. If you start up Xcode, a dialog box appears where

you can choose to create a new project (see Figure 2-3 in the previous chapter).

Otherwise, if Xcode is already running, choose File ➤ New Project, or press

N. A dialog box appears letting you choose a project template.

2. Click Application under the Mac OS X category in the left pane of the dialog box.

3. Click Cocoa Application in the right pane of the dialog box, and then click the

Next button. A new dialog box appears, asking for the product name.

4. Type any name, such as TestProgram, and click the Next button. A Save As

dialog box appears.

5. Choose the drive and folder to store your Xcode project, and click the Save

button. Xcode saves your new project.

6. Click the gray arrow (called a disclosure triangle) that appears to the left of the

Classes folder in the left pane of the Xcode window. Two files appear named

TestProgramAppDelegate.h and TestProgramAppDelegate.m. (If you named your

project something other than TestProgram, your chosen name will appear as part

of the file name instead.)

CHAPTER 3: The Basic Steps to Creating a Mac Program 31

7. Click the TestProgramAppDelegate.m file. The Objective-C code in that file appears

as shown in Figure 3–1.

Figure 3–1. Clicking a file displays its contents in the middle pane of the Xcode window.

8. Move the cursor in front of the two slashes that appear to the left of the text that

reads “Insert code here to initialize your application.”

9. Type the following (make sure you type it exactly with the same uppercase and

lowercase characters):

NSLog (@"Hello, world!");

What you’re doing is adding a line of code to a subprogram named

applicationDidFinishLoading. This subprogram runs only when a certain event occurs.

In this case, this subprogram runs when your program (or application) successfully

starts.

The keyword NSLog is an Objective-C command that displays a string of characters—in

this case, “Hello, world!” The entire subprogram should look like this:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

 NSLog (@"Hello, world!"); // Insert code here to initialize your application
}

To help identify different parts of your Objective-C code, Xcode highlights different

commands in colors. Although there are more symbols, commands, and characters that

CHAPTER 3: The Basic Steps to Creating a Mac Program 32

may not make sense to you at this time, the main point to learn is just that this is a

subprogram that runs when your program first starts.

10. Choose File ➤ Save or press S to save your changes. To see your program

work, click the Build and Run button, or choose Build ➤ Build and Run.

If you mistyped something or forgot a punctuation mark, such as the semicolon, Xcode

will display an error message, as shown in Figure 3–2.

Figure 3–2. Xcode can alert you to errors or problems in your code.

If you did type everything correctly, Xcode will compile and run your program, displaying

a window with pull-down menus at the top of the screen. In case you’re wondering why

you can’t see the “Hello, world!” message, it’s because the command you wrote prints

to a special screen called the Log or Console, which does not appear on the Mac user

interface. To view the log, you need to do the following:

1. Quit the currently running test program.

2. Click the Xcode icon on the Dock to make the Xcode window appear.

3. Choose Run ➤ Console, or press R. The Debugger Console window displays

the log window. If you look for the bold text, the “Hello, world!” message appears

there, as shown in Figure 3–3.

CHAPTER 3: The Basic Steps to Creating a Mac Program 33

Figure 3–3. The Debugger Console window is where the NSLog command prints its messages.

There are four lessons you should learn from this brief exercise. First, you must type

Objective-C code exactly right using both uppercase and lowercase characters. If you

mistype a command and use the wrong case (such as uppercase instead of lowercase,

or vice versa), your program will not work. That’s because Objective-C considers

uppercase and lowercase characters to be completely different, so a lowercase a is as

different from an uppercase A as the letter Z is completely different from the letter T.

Typing Objective-C commands incorrectly is the most common source of errors.

Second, to define the end of each Objective-C line, you must use a semicolon. If you

forget this semicolon, your program will not work correctly. Omitting the semicolon is

another common source of errors.

Third, the NSLog command displays text to the Debugger Console window, but not to the

Mac screen. The Debugger Console window often displays messages that explain what

your program has done, which can be useful later when you’re testing your program to

make sure it’s working.

Fourth, a Mac program is typically divided into subprograms that respond to different

types of events. In this example, you wrote a command inside a subprogram that ran

only when a certain event occurred. In this case, the event is when your program first

loads and runs.

Although this may seem like a simple example, it’s already taught you much about how

Mac programming works using Xcode.

A Simple User Interface Example
By using the NSLog command, you can verify that certain parts of your program are

actually running. In a normal program, you would delete these NSLog commands before

giving your program to others.

CHAPTER 3: The Basic Steps to Creating a Mac Program 34

Of course, displaying messages to the Debugger Console window is meant for the

programmer to see, not for the user of your program to see. In today’s world of

computers, nearly every program displays and accepts information through a graphical

user interface (GUI) consisting of pull-down menus, windows, and buttons. In this

exercise, you’ll display “Hello, world!” on your program’s user interface by modifying the

project you created in the previous section of this chapter.

1. Close or hide the Debugger Console window so you can see the Xcode window

displaying your list of files and folders that make up your program.

2. Click the gray arrow (disclosure triangle) that appears to the left of the Resources

folder. A list of files appears including one named MainMenu.xib, which is the file

that contains your program’s user interface. (Programs can contain more than one

.xib file to create multiple user interfaces, but this simple program needs only one

user interface and hence only one .xib file.)

3. Double-click the MainMenu.xib icon. The Interface Builder window appears, as

shown in Figure 3–4.

Figure 3–4. The Interface Builder screen is where you design your program’s user interface.

4. Choose Tools ➤ Library. The Library window appears, as shown in Figure 3–5.

CHAPTER 3: The Basic Steps to Creating a Mac Program 35

Figure 3–5. The Library window provides objects you can place on your user interface.

CHAPTER 3: The Basic Steps to Creating a Mac Program 36

5. Scroll through the Object Library window until you find an object called Label.

6. Drag the Label object from the Library window to the inside of the window that

appears in the middle pane of the Xcode window, as shown in Figure 3–6.

Figure 3–6. Dragging a Label object places it on your program’s user interface.

7. Double-click the Label object you just placed on your user interface. Xcode

highlights the text inside the label.

8. Type Hello, world! and press Return. The words “Hello, world!” now appear in the

label.

9. Choose File ➤ Save or press S to save your changes.

10. Switch back to the Xcode, and click the Build and Run button or choose Build ➤

Build and Run. Your program’s user interface appears, displaying the text “Hello,

world!” inside its window.

11. Quit the program to return to the Xcode window.

In this short example, you learned that Xcode stores your user interface as a .xib file,

stored inside the Resources folder. To view and modify your user interface, you have to

open the .xib file. Large programs may have multiple .xib files, but a simple program

needs only one .xib file since it needs only one user interface.

Your user interface consists of multiple parts such as a window (for displaying

information) and pull-down menus. In this example, you only modified the window

CHAPTER 3: The Basic Steps to Creating a Mac Program 37

portion of the user interface by clicking the Window icon that appears among other

icons.

To customize your user interface, you had to open the Library window and choose to

view the Object Library, which contains common user interface items such as buttons

and text fields. In this example, you dragged a Label object onto the user interface

window and then customized the text inside that label to display “Hello, world!”

An Interactive User Interface Example
Using a label on the user interface to display text might work, but it’s a static, fixed

solution. To change the text displayed, you have to modify the label on the user

interface. A more flexible solution is to allow the user interface to accept and display

different types of text without having to edit the user interface directly.

In this example, you’ll customize the same program you edited from the previous

section in this chapter, but you’ll add a button that users can click. When the user clicks

the button, the text in the label will change.

1. Click the gray arrow (disclosure triangle) that appears to the left of the Resources

folder in the Xcode window. (You may be able to skip this step if a list of files

already appears.)

2. Click the MainMenu.xib icon. The Interface Builder screen appears (shown in

Figure 3–4).

3. Choose Tools ➤ Library. (You may be able to skip this step if the Library window

already appears.)

4. Scroll through the Object Library list until you find the Push Button object.

5. Drag the Push Button object and place it anywhere on your program’s window

near the label object.

6. Double-click the text that appears on the Push Button object and type Good-bye.

Then press Return.

7. Choose File ➤ Save, or press S to save your changes.

At this point, you’ve created a push button on your user interface, but it won’t do

anything. To make the push button work, you need to complete two additional tasks.

First, you need to write a subprogram filled with instructions or code that tells the

computer what to do if the user clicks that push button. In Objective-C, subprograms

are called methods, so in technical terms, you have to create a push button method.

Second, you need to “connect” your method to the actual push button on your user

interface. Connecting your method to your user interface push button tells Xcode to run

the connected method whenever the user clicks that particular push button.

CHAPTER 3: The Basic Steps to Creating a Mac Program 38

Writing Objective-C Code
The goal is to make the push button change the currently displayed text in the label. To

do this, you need to write two types of Objective-C code called Actions and Outlets. An

Action responds to something from the user interface, such as the user clicking a push

button. An Outlet connects to a user interface item such as displaying text in a label

object.

To define an Action, you’ll need to write a method and fill it with Objective-C code that

tells the computer what to do if the user does something. In this case, you’ll be creating

a method to respond when the user clicks the push button.

To make your user interface display information through an Outlet, you need to declare a

variable as an Outlet. Then you’ll have to define which part of your user interface is

connected to that particular variable.

Creating an Action Method
There are three steps to creating an Action method:

1. Declare the name of your method.

2. Write the code that makes your method work.

3. Connect your Objective-C method to your user interface object, such as a push

button.

If you peek into the Classes folder of your project, you’ll see two identically named files

(such as TestProgramAppDelegate.h and TestProgramAppDelegate.m). The .h file is

known as a header file, and the .m file is known as the implementation file.

The header (.h) file defines all the methods and variables (called properties) that other

parts of the program need to know about.

The implementation (.m) file defines all the details of your methods, which is actually

hidden from the rest of your program.

So to write a method, you’ll need to first declare just that method name in the header

(.h) file, and then you have to write the actual method code in the implementation (.m)

file.

After you’ve done this, you’ll be ready for the third and final step of connecting your

method to your user interface object, such as a push button.

To create the Action method for the push button on your user interface, follow these

steps:

1. Switch to the Xcode window, and click the TestProgramAppDelegate.h file stored

in the Classes folder. The Objective-C code for this file appears.

2. Type the following bold text in the existing Objective-C code:

CHAPTER 3: The Basic Steps to Creating a Mac Program 39

@interface TestProgramAppDelegate : NSObject <NSApplicationDelegate> {

 NSWindow *window;
 NSTextField *message;
}

@property (assign) IBOutlet NSWindow *window;
@property (assign) IBOutlet NSTextField *message;

-(IBAction)goodBye:(id)sender;

@end

Here’s what you just typed:

 NSTextField *message: This declares a variable called message, which

can display data in the Label user interface object. (The Label user

interface object is based on another object called NSTextField.)

 @property (assign) IBOutlet NSTextField *message;: This defines

the variable message as a property that other parts of your program can

use to retrieve information out of the message variable or store

information into the message variable. Note the keyword IBOutlet,

which lets you know that the variable is meant for displaying

information as an Outlet to a user interface object.

 -(IBAction)goodBye:(id)sender;: This declares your Action method

for the push button on your user interface. The name goodBye is the

name of the method and is completely arbitrary; feel free to use a

name of your own choosing.

After typing these three lines of Objective-C code into the header (.h) file, you need to

save this file by choosing File ➤ Save or pressing S. Then you need to finish defining

your Outlets and Actions in the implementation (.m) file:

1. Click the TestProgramAppDelegate.m file stored in the Classes folder. The

Objective-C code for this file appears in the middle pane of the Xcode window.

2. Type the following bold text in the existing Objective-C code:

#import "TestProgramAppDelegate.h"
@implementation TestProgramAppDelegate
@synthesize window;
@synthesize message;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

 NSLog (@"Hello, world!"); // Insert code here to initialize your application
}
 - (void)dealloc {
 [window release];
 [super dealloc];
}
-(IBAction)goodBye:(id)sender
{

CHAPTER 3: The Basic Steps to Creating a Mac Program 40

 message.stringValue = @"Good-bye";
}

@end

The @synthesize message; line lets your program read and save data in the message

variable.

NOTE: In other object-oriented programming languages, you often have to write two additional
methods called a setter and a getter. The setter method lets you store data in the variable, and
the getter method lets you read data from the variable. To avoid making you write these two
separate methods yourself, Xcode lets you use the @synthesize command, which duplicates

the features of the setter and getter methods without making you write out the ugly details.

-(IBAction)goodBye:(id)sender
{
 message.stringValue = @"Good-bye";
}

This Action method (defined by the IBAction keyword) holds only a single line of code

between the curly brackets. This line of code simply stores the string “Good-bye” in a

message variable. The message variable is an Outlet to a user interface object, so it

holds the actual string in a property called the stringValue.

Save this file by choosing File ➤ Save or pressing S. To finish, you need to “connect”

this Objective-C code to your user interface to make everything actually work.

Connecting the User Interface
At this point, all you’ve done is write Objective-C code in the header (.h) and

implementation (.m) files. However, your user interface has no idea that all of this newly

added Objective-C code even exists. To fix this problem, you’ll need to “connect” your

Outlets and Actions.

Connecting an Outlet to a user interface means selecting a variable name and dragging

the mouse to connect a line between the variable name and a user interface object to

display the data.

Connecting an Action to a user interface means selecting the name of an Action method

and dragging the mouse to connect a line between the Action method name and a user

interface object, such as a push button object.

To connect Actions and Outlets to your user interface, you need to follow these steps:

1. Double-click the MainMenu.xib file stored in the Resources folder in the Xcode

window. The Interface Builder windows appear.

CHAPTER 3: The Basic Steps to Creating a Mac Program 41

Right-click the Test Program App Delegate blue cube icon inside the

MainMenu.xib window. A heads-up display window appears, as shown in Figure

3–7.

Figure 3–7. Right-clicking an icon displays a window.

2. Move the mouse pointer over the little circle that appears to the right of the

message (under the Outlets heading) at the top of the window. Drag the mouse

over the Label object on the user interface, and release the mouse button, as

shown in Figure 3–8.

Figure 3–8. Dragging from the Outlet circle to the user interface connects the message variable to the Label
object.

CHAPTER 3: The Basic Steps to Creating a Mac Program 42

3. Move the mouse pointer over the little circle that appears to the right of the

goodBye method name (under the Received Actions heading). Drag the mouse

over the push button object on the user interface, and release the mouse button,

as shown in Figure 3–9.

Figure 3–9. Dragging from the Actions circle to the user interface connects the Action method to the push button
object.

After you have connected your user interface to your Objective-C code (Outlets and

Actions), save your program by choosing File ➤ Save or pressing S to save your

changes.

Then switch back to Xcode, and click the Build and Run button or choose Build ➤ Build

and Run. When your program’s user interface appears, click the Good-bye button, and

the text in the label changes from “Hello, world!” to “Good-bye.”

An Advanced Interactive User Interface Example
The previous sample program showed how to respond to an Action (the user clicking

the push button) and how to display data through an Outlet (displaying text inside the

label object). The next step in designing a user interfaces is to learn how to retrieve

information from the user.

Displaying the message “Good-bye” in the label every time you click the push button

isn’t very flexible. Whenever you write code that has data written directly in its

instructions, that’s referred to as hard-coding, which means the code can only do the

same thing over and over again until you change the code.

Hard-coding isn’t necessarily bad, but it limits the versatility of your program. A better

solution is to make your code work with any type of data. In this example, you’ll be

adding a text field to your user interface. When the user clicks the push button, the text

CHAPTER 3: The Basic Steps to Creating a Mac Program 43

from the text field will appear in the label (instead of repetitively displaying “good-bye” in

the label each time).

You can complete this next sample program in several ways. First, you can draw a text

field on your user interface, go back and define an Outlet for that text field in Objective-

C, and then go back to your user interface and connect the text field on the user

interface to the Outlet you defined in Objective-C code. Constantly switching back and

forth between your user interface and your Objective-C code might seem cumbersome,

so a second way is to focus on one task at a time by planning ahead.

Any time you need to either display or retrieve data, you need an Outlet so you can

declare an Outlet in your Objective-C code. Then you can view your user interface, add

a text field, and connect the text field to your newly created Outlet.

Either method works; it all depends on how you like to work. The three basic steps are

as follows:

1. Draw a text field on the user interface.

2. Declare an Outlet to hold the data in the text field.

3. Connect the Outlet to the text field on the user interface.

To create an Outlet, you need to edit the Objective-C code by following these steps:

1. Switch to Xcode, and click the TestProgramAppDelegate.h file in the Classes

folder. The Objective-C code for that file appears.

2. Type the following bold text in the existing Objective-C code:

@interface TestProgramAppDelegate : NSObject <NSApplicationDelegate> {

 NSWindow *window;
 NSTextField *message;
 NSTextField *inputData;
}

@property (assign) IBOutlet NSWindow *window;
@property (assign) IBOutlet NSTextField *message;
@property (assign) IBOutlet NSTextField *inputData;

-(IBAction)goodBye:(id)sender;

@end

3. Choose File ➤ Save or press S to save your changes.

4. Click the TestProgramAppDelegate.m file in the Classes folder. The Objective-C

code for that file appears.

5. Type the following bold text in the existing Objective-C code:

@implementation TestProgramAppDelegate

@synthesize window;
@synthesize message;

CHAPTER 3: The Basic Steps to Creating a Mac Program 44

@synthesize inputData;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

 NSLog (@"Hello, world!"); // Insert code here to initialize your application
}

-(IBAction)goodBye:(id)sender
{
 message.stringValue = inputData.stringValue;
}

@end

Inside the goodBye Action method, you’ll need to delete this line:

message.stringValue = @"Good-bye";

6. Choose File ➤ Save, or press S to save your changes.

After you declared your Outlet in both the header (.h) and implementation (.m) files, you’ll

need to modify your user interface.

NOTE: When switching between Xcode to edit your Objective-C code and Interface Builder to
design your user interface, always make sure to save all changes in one program before
switching to the other. So if you edit your Objective-C code, save your changes before switching

to Interface Builder (and vice versa). If you fail to save your changes, Xcode may not notice any
changes you made in Interface Builder and Interface Builder may not notice any changes you
made in Xcode. The result is that you could make a change, and then run your program but your

program doesn't reflect any changes you made, which can give the illusion that your changes

aren't working.

1. Double-click the MainMenu.xib file stored in the Resources folder.

2. Scroll through the Object Library window, and drag a Text Field object to your

user interface. If the Object Library window isn’t visible, choose Tools ➤ Library.

3. Right-click the Test Program App Delegate icon. A pop-up window appears.

4. Move the mouse pointer over the little circle to the right of the inputData Outlet,

and drag the mouse over the text field you just placed on the user interface, as

shown in Figure 3–10.

CHAPTER 3: The Basic Steps to Creating a Mac Program 45

Figure 3–10. Dragging from the inputData circle to the text field connects the text field to the inputData
Outlet defined in your Objective-C code.

5. Choose File ➤ Save or press S to save your changes.

After you have connected the text field on the user interface to your Objective-C code

and saved your program, switch back to Xcode, click the Build and Run button, or

choose Build ➤ Build and Run. When your program’s user interface appears, click in the

text field, type any text you want, and then click the Good-bye button. The label now

displays the text you typed into the text field.

Summary
In this chapter, you learned how to create a simple “Hello, world!” program that displays

text. Initially, you learned how to use the NSLog command to display text, although the

NSLog command merely sends data to a special Debugger Console window, not to the

program’s user interface. Although you won’t be using the NSLog command to interact

with the user, you can use the NSLog command to help test your program.

With each succeeding version of the sample program, you gradually learned how to

create and display data on your program’s user interface. First, your program’s user

interface gets stored as a .xib file in the Resources folder. Larger, more complicated

programs may have several .xib files to create a more sophisticated user interface, but

this sample program just uses a single .xib file because it only needs a simple user

interface.

Your user interface consists of pull-down menus and windows. To design the items that

appear on the window, you need to click the Window icon to view the window in the

Xcode window.

Next, you need to open the Object Library window and drag objects (such as labels,

buttons, or text fields) onto the window of your user interface. Later, you’ll learn how to

CHAPTER 3: The Basic Steps to Creating a Mac Program 46

precisely align user interface objects, but for now, you just need to know how to drag

items from the Object Library window and place them on the user interface window.

To customize the appearance of some user interface objects, you can double-click the

text they display. This lets you edit the existing text or replace it with new text

altogether.

After designing your user interface, the last step is to link your user interface to your

Objective-C code. For each object on your user interface that needs to either display

data or retrieve data that the user typed in, you’ll need to create an Outlet variable. For

each Outlet variable, you’ll need to write Objective-C code in the header (.h) file and the

implementation (.m) file.

In the header (.h) file, you’ll need to declare a variable and then declare a variable as an

Outlet property. In the implementation (.m) file, you’ll need to use the @synthesize

command to allow other parts of your program to store and retrieve data from that

variable.

For each user interface object that provides a command to the user, you’ll need to

create an Action method that contains one or more instructions that tell your program

what to do when the user gives a command, such as clicking a push button. You need

to declare the name of your Action method in the header (.h) file and then write the

actual method code in the implementation (.m) file.

Finally, you’ll need to right-click the icon that represents the files where you wrote and

stored your Outlet and Action code. This displays a window that lets you drag to a user

interface object and connect the user interface object to a specific Outlet or Action.

Although you created only a simple program and modified it, you can already see the

basic steps needed to create any Mac program using Xcode. Mac programming is a

combination of writing Objective-C code and designing your user interface.

47

47

 Chapter

Getting Help
Nobody knows everything, which is why everyone may need help writing programs once
in a while. Sometimes you may need help just figuring out how to use Xcode. Other
times you may need help creating your program by looking for a specific Objective-C
command or using a specific user interface object.

Of course, one of the most reliable places to look for help is to search for your problem
on the Internet. Most likely, someone else has already run into your problem and has
already stumbled across an answer. There are also multiple programming forums where
you can post questions and get a response fairly quickly, depending on the nature of
your question.

Unfortunately, you can’t always rely on the Internet to help you find the answers to your
problems. Sometimes people won’t know the answer. Other times you can’t afford to
wait a day or two until someone responds. In these situations, you need to know how to
find help on your own right away. When you might know what you want to do but have
no idea how to do it, that’s when you need to turn to Xcode’s help system.

Installing Help Topics
Xcode provides help on a variety of topics, but to avoid overwhelming you with all
available help topics, Xcode organizes help into topics such as iOS (for iPhone and iPad
programming) and Mac OS X (for Mac programming). To ensure that you have the help
topics for Mac OS X, you may need to load the Mac OS X help by following these steps:

1. Choose Xcode ➤ Preferences. The Xcode Preferences window appears.

2. Click the Documentation icon at the top of the window. (You may need to scroll

these icons to the right to find the Documentation icon.)

3. Click the Documentation Sets tab, as shown in Figure 4–1.

4

CHAPTER 4: Getting Help 48

Figure 4–1. The Documentation Sets tab reveals all the currently installed documentation topics.

4. (Optional) Click the Get button next to a topic you want help on, such as Mac OS

X Java Library or Xcode 3.2 Developer Tools Library.

5. Click the close button of the Xcode Preferences window to make it disappear.

Getting Help About Xcode
The easiest type of help to find is when you have questions about using Xcode such as
how to use certain commands or how to modify the appearance of the Xcode window.
When you need help on using Xcode, follow these steps:

1. Choose Help ➤ Xcode Help. The Developer Tools Reference Library window

appears, as shown in Figure 4–2.

CHAPTER 4: Getting Help 49

Figure 4–2. The Developer Tools Reference Library window

2. Click a displayed topic. The window displays details about your chosen topic.

3. (Optional) Click the Back and Forward arrows that appear in the upper-left corner

of the window. This lets you quickly display information you’ve previously viewed.

Getting Help About Core Library
Using Objective-C and Xcode, anyone can write any type of program for the Mac. The
problem is that when you need to do something routine such as saving a file to a disk or
displaying a window on the screen, you would have to write your own Objective-C code
to perform these common functions.

Not only does this mean you would have to spend time writing code to do routine tasks,
but you’d also have to test these routines to make sure they work as well. With
thousands of programmers creating their own routines, chances are good that one
programmer’s code to create windows won’t look or work identically to another
programmer’s code to create and display those same type of windows.

To avoid this chaotic situation where everyone must essentially reinvent the wheel,
Apple provides code stored in something called the Core Library. This collection of code
performs common tasks. Just as a public library lets everyone read the same books, so
does the Core Library let everyone use the same code. Any time you need to do a

3

CHAPTER 4: Getting Help 50

common task, such as save a file or play audio, chances are good that Apple has
already written that code. All you need to do is figure out whether that code exists and, if
it does, how to use it.

To browse through the Mac OS X Core Library, follow these steps:

1. Choose Help ➤ Xcode Help. The Organizer window appears, displaying the

Xcode documentation files (see Figure 4–2).

2. Click the Home icon at the top of the left pane.

3. Click Mac OS X Core Library in the left pane.

4. Click the gray arrow (called a disclosure triangle) that appears to the left of the

Mac OS X Core Library icon. A list of topics appears, as shown in Figure 4–3.

Figure 4–3. The help window displays different topics about Mac OS X topic.

5. Click the help you want to view. A list of help topic appears that you can choose.

When browsing through Xcode’s Core Library help, you may see several different types
of help screens:

 Q&A

 Tips

 Sample programs

CHAPTER 4: Getting Help 51

 Class references

A Q&A help screen, as shown in Figure 4–4, answers a common question and provides
detailed explanation for solving a specific type of problem.

Figure 4–4. A Q&A screen typically explains how to solve a specific type of problem.

A tips help screen typically provides programming guidelines for designing your
programs, as shown in Figure 4–5.

CHAPTER 4: Getting Help 52

Figure 4–5. A tips screen typically offers advice and tips for creating your program.

A sample program help screen briefly describes what the sample program does and
how it works so you can see whether it’s something you want to study, as shown in
Figure 4–6. Other screens might show the actual Objective-C code.

CHAPTER 4: Getting Help 53

Figure 4–6. A sample programs screen explains what the sample program does and how it works.

A class reference screen provides detailed information about a class that performs a
specific task, which you can use in your own programs. The class reference screen lists
the properties and methods stored in that class as well as any related classes, as shown
in Figure 4–7.

CHAPTER 4: Getting Help 54

Figure 4–7. A class reference screen provides programming details for how a particular class works and what it
does.

Searching for Help
Browsing through the Xcode help window can be a great way to stumble across
interesting information about using Xcode or using Apple’s Core Library. However,
random browsing can be tedious and time-consuming. When you need help with a
specific topic, it’s much faster to search through the help screens and jump straight to
the information you need.

To search for help, follow these steps:

1. Choose Help ➤ Xcode Help. The Reference Library window appears.

2. Click the Search field that appears in the upper-right corner of the Reference

Library window, as shown in Figure 4–8.

CHAPTER 4: Getting Help 55

Figure 4–8. The Search field where you can type a term or phrase

3. Click in the Search field, type a term or phrase, and press Return. The Xcode

window displays topics related to your query.

4. Click a topic to display information.

Getting Quick Help
One problem with using Xcode’s help window is that you may be busy working on your
program and need help on a particular Objective-C command right away. You could
wade through the different Xcode help screens, or you could just use Xcode’s Quick
Help command instead.

Quick Help lets you select a command directly in your Objective-C code and display a
tiny window of help, as shown in Figure 4–9. You can also get Quick Help by selecting
an item on your user interface and choosing the Quick Help command.

CHAPTER 4: Getting Help 56

Figure 4–9. Quick Help displays a window near your selected command.

To use Quick Help, follow these steps:

1. Click an Objective-C code file (either an .h or .m file), or click a .xib file that

makes up your user interface.

2. Select an Objective-C command, or click a user interface object such as a button.

3. Choose Help ➤ Quick Help. A window appears, displaying help near your

selected Objective-C command or user interface object.

Viewing Documentation for Selected Text
The Quick Help command lets you view a condensed version of information about
commands or objects you select. However, if you need more detailed information about
an Objective-C command, you can browse through the documentation yourself, which
can be time-consuming and tedious. For a faster solution, just let Xcode show you the
documentation for a specific command.

To view help for a specific Objective-C command, follow these steps:

1. Click an Objective-C code file (either an .h or .m file).

2. Select an Objective-C command.

3. Choose Help ➤ Find Documentation for Selected Text. The Organizer window

appears, displaying help about your selected Objective-C command, as shown in

Figure 4–10.

CHAPTER 4: Getting Help 57

Figure 4–10. You can highlight Objective-C code to view detailed help.

Getting Help with Library Windows
When you’re creating your program, you’ll often use one of the Library windows to help
you design your user interface. By clicking an item displayed in each Library window,
you can view a window that explains the purpose of your selected item.

To get help with an item displayed in a Library window, follow these steps:

1. Switch to Interface Builder.

2. Choose Tools ➤ Library.

3. Click an item, and keep the mouse pointer over that item. Xcode displays a

window that describes the purpose and function of your chosen item, as shown in

Figure 4–11.

CHAPTER 4: Getting Help 58

Figure 4–11. Clicking an item in a Library window displays information about that item.

CHAPTER 4: Getting Help 59

Help While Writing Code
Even the most experienced programmer can make mistakes or forget how to spell or
use a particular command. To help you write code easier and faster, Xcode provides
several tools.

First, Xcode can color-code keywords and commands to make it easier to identify
different parts of your code. Second, Xcode lets you modify the way the editor works so
it displays code the way you like. In addition, Xcode also offers a code completion
feature so you can start typing a command and have Xcode guess what command you
might want to use.

Color-Coding
Xcode highlights Objective-C commands in different colors to help you identify the parts
of your program. This feature is turned on by default, but you can turn it off or choose
different color-coding schemes.

To modify the way Xcode displays code in different colors, follow these steps:

1. Choose Xcode ➤ Preferences. The Preferences window appears.

2. Click the Fonts & Colors icon to display the different color-coding options, as

shown in Figure 4–12.

Figure 4–12. The Fonts & Colors icon lets you choose or modify the way Xcode colors Objective-C commands.

CHAPTER 4: Getting Help 60

Customizing the Editor
The editor portion of Xcode is where you type Objective-C commands. To make editing
simpler, you can turn on (or off) code completion, which is where Xcode tries to guess
what command you’re typing before you finish typing it all. In addition, you can also
modify the way the editor displays your code such as changing how far it indents code
or having the editor display line numbers to help you pinpoint a particular part of your
program.

To modify the way the Xcode editor works, follow these steps:

1. Choose Xcode ➤ Preferences. The Preferences window appears.

2. Click the Text Editing icon to display the different editing options including code

completion, as shown in Figure 4–13.

Figure 4–13. The Text Editing icon displays ways to modify the appearance of Objective-C code in the editor.

Using Code Completion
Code completion lets you type part of an Objective-C command and have Xcode display
a likely command you may want. Then you just have to select the suggested command
or keep typing if the suggested command isn’t the one you want.

To use code completion, follow these steps:

CHAPTER 4: Getting Help 61

1. Type a command. As soon as Xcode recognizes a valid command, it displays a

possible command in faint text, as shown in Figure 4–14.

Figure 4–14. As you type, code completion displays a possible command.

2. Choose one of the following options:

a. If the suggested command is not what you want, keep typing, and
Xcode may display another suggested command.

b. If the suggested command is what you want, highlight it using the
up/down arrow key, and then press Return key so Xcode types the
rest of the suggested command automatically.

Through code completion, Xcode helps minimize typing errors and helps you write code
faster and more accurately.

When writing Objective-C code, you often need to use curly brackets to group related
code. Since multiple brackets can make identifying each pair of left and right brackets
difficult, Xcode can highlight a matching bracket (or matching square bracket, or
matching parenthesis) by following these steps:

1. Move the cursor to the left of a right bracket (}).

2. Press the right arrow key to move the cursor to the right of the right bracket (}).

Xcode highlights the matching left bracket ({), as shown in Figure 4–15.

Figure 4–15. Moving the cursor across a right bracket highlights its matching left bracket.

Summary
Although there’s no substitute for a book or someone by your side who can answer your
question, you can often find the help you need by digging through Xcode’s help
documentation.

When you know what type of task you want to accomplish but don’t know the exact
command to use, you may want to browse through Xcode’s help. By rummaging
through the help documentation, you can find Apple’s library of code that you can use in
your own programs.

As a general rule, only write code that’s unique to what your program needs to do. When
you need to do a more general task, such as saving a file or displaying graphics on the

CHAPTER 4: Getting Help 62

screen, chances are good that Apple already provides code that does what you need,
so all you need to do is find that proper command.

When designing your user interface, you’ll often need to know which methods and
properties are available. For example, if you want to know how to display text in a Label
object, you need to know the property to use (stringValue).

To find the properties available in an object, click that item in the Library window to
display a little window, which tells you what class that user interface object is based on.
(In the case of a Label object, it’s based on the NSTextField class.)

Once you know the class, you can search for that specific class to view a more detailed
list of all the available methods and properties for that class.

Xcode tries to provide as much help as possible, but there’s no substitute for just
digging into your programs, making mistakes, and fumbling around for a while. Like
learning any new skill, programming the Mac may feel strange and confusing initially, but
the more you do it, the easier it will get. The key is to keep practicing a little bit each day
until digging through Xcode’s help documentation becomes second nature and
understanding Xcode’s help screens gradually becomes clear and actually
understandable.

63

63

 Chapter

Learning Objective-C
In the old days of programming, you had to write code to create your user interface and

then create your actual program. With Xcode, you can create your user interface without

writing any code at all. However, to make your program do something, you’ll still need to

write code. Although you can theoretically use any programming language to create a

Mac program, the language used most often (even by Apple’s programmers themselves)

for this task is Objective-C.

When learning any programming language, you must first learn the syntax, which defines

how to write commands in a particular programming language. Then you need to learn

how to do common tasks used to create a typical program.

If you’re already familiar with another programming language, you can skim through this

chapter to get acquainted with the way Objective-C works. However, if you’ve never

used any programming language at all, then this chapter will explain the basics of

programming the Mac using Objective-C.

Differences in Writing a Mac Objective-C Program
There’s a big difference between writing a program in traditional Objective-C and writing

a program in Objective-C for the Mac. When you write an ordinary Objective-C program,

you have to write a main program that looks something like this:

int main(int argc, const char *argv[]) {
 printf("Hello, world!");
 return 0;
}

Every Objective-C program consists of a main program (identified by the keyword main).

To make your program work, you have to write and store instructions in this main

program.

In this example, there are only two instructions. One displays the message “Hello,

world!” on the screen, and the second returns a 0, which essentially tells the operating

system that the program ran successfully. In a more complex Objective-C program, you

5

CHAPTER 5: Learning Objective-C 64

might have thousands of instructions stored in this main program or stored in multiple

subprograms, which are called or run from within this main program.

A Mac Objective-C program also has a main program, but Xcode creates this main

program for you automatically. Normally, you never even have to peek at this main

program, let alone modify it. To examine this main program, open the Other Sources

folder, and click the main.m file to view the code, as shown in Figure 5–1. This Mac

Objective-C main programs looks like this:

int main(int argc, char *argv[])
{
 return NSApplicationMain(argc, (const char **) argv);

}

Figure 5–1. The main.m file appears in the Other Sources folder.

Essentially, the main program consists of a single line of code, which loads the main user

interface file (typically called MainMenu.xib). When the main program runs, it also runs any

instructions stored inside a method called applicationDidFinishLaunching, which

appears in the AppDelegate.m file inside the Classes folder, as shown in Figure 5–2.

CHAPTER 5: Learning Objective-C 65

Figure 5–2. The AppDelegate.m file is where you can write methods for responding to events.

When you need to write code to do something right away, you need to store this code in

this AppDelegate.m file’s applicationDidFinishLaunching method:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSLog (@"Hello, world!");
}

In a traditional Objective-C program, you have to write a main program and fill it with

instructions written in Objective-C. In a Mac Objective-C program, Xcode creates your

main program automatically, so you just need to write instructions in other files, such as

the AppDelegate files (created automatically by Xcode) or any additional files you create.

Understanding Objective-C Symbols
In comparing a traditional Objective-C program with a Mac Objective-C program, you

may notice the different commands in printing “Hello, world!” on the screen. In a

traditional C program, you might use the printf command. In a Mac Objective-C

program, you can use printf, but you’ll more commonly use NSLog.

The printf command normally prints to the screen, but with a Mac program, you

actually need to print to the user interface or to the Log or Console window, which is

what the NSLog command does.

CHAPTER 5: Learning Objective-C 66

The second difference is that the printf command prints any data that appears inside

quotation marks. The NSLog command does that as well but requires that the @ symbol

appears in front of the data inside the quotation marks:

NSLog (@"This prints a message.");

When writing Mac Objective-C programs, you’ll see this @ symbol often, which identifies

commands that are unique to Objective-C and not found in traditional C programs.

Rather than just print text using the NSLog command, you may need to print different

types of data. To do this, you’ll have to use the % symbol followed by a single letter that

identifies the type of data to print. The three most common types of data you can print

are as follows:

 %i: Prints integer values such as 34, 192, and 5

 %f: Prints floating-point values such as 54.903 and 2.14

 %@: Prints objects such as strings like @"Hello, world"

When printing data with the NSLog command, you need to specify the type of data to

print along with the actual data:

NSLog (@"Print an integer = %i", 34);

This command would simply print this:

Print an integer = 34

Some other symbols you’ll often see in an Objective-C program include the semicolon

(;), curly brackets ({ }), number sign (#), double slash (//), asterisk (*), and square

brackets ([]). Although such symbols may look cryptic, they all serve a specific

purpose. By understanding what these different symbols do, you can better decipher

Objective-C code and understand how it works, even if you don’t know exactly what the

code does.

Defining the End of Each Line with a Semicolon
Every program consists of instructions or code. A simple program might have only one

line of code, but most programs have hundreds, if not thousands or even millions, of

lines of code. To help the compiler understand where each line of code ends, you have

to use a semicolon:

NSLog (@"Hello, world!");
NSLog (@"Good-bye!");

The most common mistake programmers make is omitting this all-important semicolon.

Omitting the semicolon from the first line, in the previous example, makes the computer

think you actually wrote something like this:

NSLog (@"Hello, world!")NSLog (@"Good-bye!");

CHAPTER 5: Learning Objective-C 67

This line won’t work because the computer doesn’t know when the first NSLog command

that prints “Hello, world!” actually ends. Semicolons may look trivial, but they’re

extremely important and used whenever you write Objective-C code.

Defining the Beginning and End of Code with Curly
Brackets
Besides the semicolon, the second most common symbols you’ll see are the left and

right curly brackets: { and }. Since you’ll often need to write multiple lines of code that

work together to perform a specific function, curly brackets define the beginning and

end of those lines of code:

{
 NSLog (@"Hello, world!")
 NSLog (@"Good-bye!");
}

You always use curly brackets in a method (subprogram) to define all the lines of code

stored in that method. When using curly brackets, the ending right curly bracket typically

appears on a separate line. However, the beginning left curly bracket can appear at the

end of a line:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSLog (@"Hello, world!");
 NSLog (@"Good-bye!");
}

Or the left curly bracket can appear on a separate line:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification
{
 NSLog (@"Hello, world!");
 NSLog (@"Good-bye!");
}

To the computer, both approaches are equivalent, so it’s more a matter of personal style

which method you prefer. You can actually mix both styles in the same program, but it’s

usually best to stick to one style for consistency.

You may also see nested pairs of curly brackets where one pair of left/right curly

brackets appears inside another pair of left/right curly brackets:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification
{
 if (response == "true")
 {
 NSLog (@"Hello, world!");
 NSLog (@"Good-bye!");
 }
}

Each left curly bracket must pair up with a matching right curly bracket. By using

indentation (which the compiler completely ignores), you can vertically align each

CHAPTER 5: Learning Objective-C 68

matching left/right curly bracket pair. Since the compiler ignores indentation, the Xcode

compiler treats the previous code as if it actually looked like this:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification
{
if (response == "true")
{
NSLog (@"Hello, world!");
NSLog (@"Good-bye!");
}
}

Since this code can be harder to read, it’s always best to use indentation to make it

visually clear where one chunk of code begins and ends. When writing your own

Objective-C code, always strive to make it as readable and understandable as possible.

Defining Compiler Directives with the # Symbol
When you run a program, the Xcode compiler examines your code, line by line.

However, sometimes you may need to give the compiler special instructions. To do this,

you have to put the # symbol in front of these special instructions called compiler
directives. The most common compiler directive appears in front of the import keyword:

#import "MyProgramAppDelegate.h"

This #import command tells the Xcode compiler to take any code stored in a specific file

(such as the MyProgramAppDelegate.h file) and add or import that code into the current

file. From the compiler’s point of view, it’s as if you crammed all your code from a

separate file into the currently displayed file. However, from a programmer’s point of

view, your program remains divided into different files, which makes editing and

modifying these separate files far easier than trying to edit and modify one massive file.

The #import command is one that you’ll see and use often since it allows you to access

all of Apple’s prewritten and tested code without physically copying that code into your

own programs.

Defining Comments with //
When writing code, you may need to jot down a note to yourself (or to another

programmer) that explains what a particular chunk of code does or what assumptions

you’ve made in writing your code. Rather than jot down these notes on a separate piece

of paper (and risk losing or misplacing them), it’s easier to write notes directly in your

code.

To keep the Xcode compiler from mistaking your notes as code, you need to use special

symbols. For identifying a single line as a note or comment, you can use the //

characters:

{
 NSLog (@"Hello, world!");
 // This line is a comment

CHAPTER 5: Learning Objective-C 69

}

Xcode treats anything that appears after the // characters as if it doesn’t exist, so the

previous code looks like this to the compiler:

{
 NSLog (@"Hello, world!");
}

Comments can appear on a separate line or at the end of a line of code:

{
 NSLog (@"Hello, world!") ; // This line is also a comment
 // This line is a comment
}

Comments are useful for writing short explanations on how your code works or for

identifying the date and name of the last programmer who changed the code. If you

need to write comments on multiple lines, you could use the // symbols at the beginning

of each line:

{
 NSLog (@"Hello, world!")
 // The line above prints to the log window
 // Last modified on April 1, 2012 by Bob Smith
}

However, typing multiple // symbols in front of each comment can get tedious. For a

faster method of turning multiple lines into comments, you can use matching pairs of the

slash and asterisk symbols:

{
 NSLog (@"Hello, world!")
 /* These two lines are comments
 Last modified on April 1, 2012 by Bob Smith */
}

The /* and */ symbols tell Xcode that anything in between those matching symbols are

a comment that the compiler can ignore. You can use both the // and /* and */

symbols to create comments in your code.

Identifying Objects with [and]
Many times your code will use single-word commands, such as NSLog, to tell the

computer to do something. However, one benefit of Objective-C is that you can divide a

large program into objects, so instead of just using the built-in commands of Objective-

C, you can define your own commands and store them in objects of your own creation.

To identify when you’re working with objects in Objective-C, you’ll need to use square

brackets in a form such as the following:

[object message];

The square brackets identify a single object and the message you’re sending to that

object. Typically that message sends either an object data or an instruction:

CHAPTER 5: Learning Objective-C 70

[textField setStringValue:@"Hello, world!"];
[personalData release];

The first line of code sends the message setStringValue using the data “Hello, world!”

to an object called textField. The second line of code sends the message release to an

object called personalData. Although you may not understand what these two lines of

code actually do at this point, the square brackets identify that you’re working with

objects.

Just like with pairs of curly brackets, you may also see nested pairs of square brackets:

[[NSObject alloc] init];

Like nested pairs of curly brackets, nested pairs of square brackets must match. For

every left square bracket, you need a matching right square bracket. Although square

brackets can look unusual, especially if you’re used to other programming languages,

just remember that square brackets always identify when you’re working with objects.

Defining Pointers with *
You can use the asterisk symbol in several ways. First, it can represent a multiplication

symbol such as 54 * 11. Second, it can identify the beginning and end of a comment:

/* This is a comment */

Third, the asterisk can identify a pointer. When storing data, computers carve out a

chunk of memory to hold the data. Each time you need to store more data, your

program needs to use more memory.

If you need to store identical data, you could store that data in three separate chunks of

memory. However, a more efficient way to use memory is to store that data once and

then create pointers to that single copy of data, as shown in Figure 5–3.

Figure 5–3. Pointers let you use memory more efficiently.

CHAPTER 5: Learning Objective-C 71

In most programming languages, including Objective-C, you can store data in a variable

such as assigning 48 to a variable named myAge. When you store data in a variable, that

data gets stored in a specific part of the computer’s memory, called a memory address.

Each time you want to store data, your data gobbles up another chunk of memory.

As an alternative to creating a new chunk of memory, pointers work by referencing or

pointing to, a memory address that already stores data. The power of a pointer is that

it’s much easier and faster to reference or point to a new memory address quickly. The

drawback is that if your pointers point to the wrong memory address, your program

could physically foul up the computer’s memory.

When working with Objective-C and objects, you’ll need to use pointers. In Objective-C,

a pointer is represented by the asterisk. Since pointers are used with objects and

Objective-C programming heavily relies on objects, you’ll be using pointers in almost

every nontrivial Mac program.

Typically you’ll use the asterisk symbol (*) to declare a pointer to an object:

Object *pointer;

Oftentimes you’ll see the asterisk symbol (*) used with square brackets:

NSObject *myObject = [[NSObject alloc] init];

Whenever you see asterisks and square brackets, chances are good that the code is

working with pointers and objects.

Manipulating Data with Variables
All programs need to store data. In any programming language, you can store data in

something called a variable. A variable is nothing more than a unique name that acts like

a box for holding data. Variables get their name because they can store various data.

One moment a variable might hold 45, and the next moment that same variable might

hold 740.

To avoid mixing data up, every variable needs a unique name where each variable can

hold only one chunk of data at a time. The moment you store data in a variable, any new

data wipes out any data currently stored in that variable.

Declaring Variables
Before you can use a variable, you must create or declare that variable. Declaring a

variable simply tells the Xcode compiler that the variable is now available for storing

data. There are two parts to declaring a variable.

First, you must define a unique name for your variable. Second, you must define the

type of data that the variable can hold.

The name you give a variable is completely arbitrary, although most programmers use a

descriptive name. For example, if a variable is meant to hold someone’s salary, it’s

CHAPTER 5: Learning Objective-C 72

logical to name that variable something like Salary rather than something generic and

nondescriptive like X.

Although you can name variables as short as X or as long as

Thisisavariablenamethatistoolong, it’s common in Mac programming to create

variable names that consist of two or more words combined using something called

camel case.

With camel case, the first word of the variable appears in lowercase, but the first letter of

the second and any additional words appear in uppercase:

variableName
numberHolder
lengthInMeters

After you choose a descriptive name for your variable, the second part in declaring a

variable involves defining what type of data it can hold. The most common types of data

are numbers, and the two most common types of numbers are integers and floating-

point or real numbers.

An integer variable can hold only whole numbers such as 102, 5, or 649. A floating-point

variable can hold only real numbers such as 3.125, 10.24, or 90.08.

To declare an integer variable, you need to use the int keyword followed by the variable

name:

int myAge;
int dogsInHouse;
int peopleOnBoard;

To declare a floating-point variable, you need to use the float keyword followed by the

variable name:

float stockPrice;
float averageAge;
float medicineQuantity;

NOTE: There are actually variations of int and float data types. If you want to define only
positive numbers, you can declare a variable as unsigned such as unsigned int myAge;. If
you want to make it clear that a variable can hold both positive or negative, you can declare a
signed variable such as signed int myDebt;. If you need to declare extremely large

floating-point numbers, you can use the double keyword such as double myExtremeValue;.
While you’re learning to program the Mac, you’ll probably only need to use the int and float

keywords to declare your variables.

Besides declaring variables as int or float data types, a third commonly used data type

is the Boolean data type. A Boolean variable can hold only one of two values, either 1

(YES) or 0 (NO). Boolean data types are often used to help the computer make a decision,

and based on the value of a Boolean variable, the computer may follow one set of

instructions or another set of instructions.

CHAPTER 5: Learning Objective-C 73

To declare a Boolean variable, you just need to use the BOOL keyword followed by your

variable name:

BOOL doorOpen;
BOOL onTarget;
BOOL windowOpenAndDoorShut;

Assigning Data to a Variable
When you first declare a variable, the value of that variable is unknown. If you try to use

a variable right after you declare it, the unknown value of that variable will likely crash

your program or make it behave erratically. As soon as you declare a variable, it’s a

good idea to assign a value to that variable right away.

Assigning a value to a variable simply means using the equal sign (=):

Variable = value;

There are two ways to declare a variable and assign a value to it. The first way involves

two separate lines of code:

int myAge;
myAge = 49;

A second way to assign a value to a variable is to combine the variable declaration and

the assignment to a value in a single line:

int myAge = 49;

To ensure that a variable never contains an unknown value, it’s usually best to use the

second method of declaring and assigning a variable in a single line, but as long as you

can remember to always assign a value to a variable before using it, you can use

whichever method you like.

The Scope of a Variable
When you declare a variable, you also declare the scope of that variable. The scope

defines which part of your program can access and use that variable. In most cases,

you’ll declare a variable inside a method so the scope of that variable is visible only to

code stored in that same method. For example, suppose you had two methods like this:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification
{
 int myCats = 4;
 // More code goes here
}

- (void)countBoxes;
{
 int numberOfBoxes = 75;
 // More code goes here
}

CHAPTER 5: Learning Objective-C 74

Any code stored in the applicationDidFinishLaunching method could access and use

the myCats variable because the myCats variable is declared inside that method.

Likewise, any code stored in the countBoxes method could access and use the

numberOfBoxes variable because the numberOfBoxes variable is declared inside that

method.

The scope of a variable typically lasts from the variable declaration line to the end of the

code block where the variable was declared. Since each variable was declared inside

the code block that makes up each method, each variable’s scope is valid only in that

particular subprogram or method.

What happens if you try to access a variable declared in another method like the

following?

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification
{
 int myCats = 4;
 numberOfBoxes = 120;
}

- (void)countBoxes;
{
 int numberOfBoxes = 75;
 myCats = 1;
}

In both cases, each method is trying to use a variable that was declared in a different

method. In the first method, the numberOfBoxes variable is considered undeclared. In the

second method, the myCats variable is considered undeclared.

Since the scope of a variable typically extends only within the method where it was

declared, it’s possible to do the following:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification
{
 int happyPeople = 2;
}

- (void)countBoxes;
{
 int happyPeople = 75;
}

In this example, both methods declare a variable with the same name. Although this may

look confusing, it’s perfectly valid because the scope of each variable extends only to

the method that it was declared in. Although this is valid, it’s not a good idea to use

identical variable names in different parts of your program because the potential for

confusion is so high.

As a general rule, any variable you declare will likely be accessible only inside a block of

code defined by the curly brackets: { and }.

CHAPTER 5: Learning Objective-C 75

A Program Example Using Variables
To get practice declaring and assigning values to variables, this sample program shows

how to use the NSLog command to print data stored in two different variables. To create

this sample program and see how to declare and use variables, follow these steps:

1. Start Xcode, and create a new project such as by choosing File ➤ New Project. A

dialog box pops up letting you choose a template to use.

2. Click the Cocoa Applications icon, and click the Next button. A dialog box

appears, asking you to choose a name for your project.

3. Type a name such as VariableTest, and click the Next button. A Save As dialog

box appears.

4. Select a drive and folder to store your project, and click the Save button.

5. Click the disclosure triangle (the gray arrow) that appears to the left of the Classes

folder in the left pane of the Xcode window. A list of two files appears. If you

named your project VariableTest, these two files will be named

VariableTestAppDelegate.h and VariableTestAppDelegate.m.

6. Click the .m file, such as the VariableTestAppDelegate.m file. The code for that file

appears in the middle pane of the Xcode window.

7. Modify the applicationDidFinishLaunching method so that it appears as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 int myAge = 49;
 float myPaycheck = 5120.75;
 NSLog (@"This is my age: %i", myAge);
 NSLog (@"This is my paycheck amount: %f", myPaycheck);
}

8. Choose File ➤ Save or press S.

9. Click the Build and Run button, or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

10. Quit the program, such as clicking the Stop button or choosing Product ➤ Stop

from the Xcode pull-down menus.

11. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command such as the following:

2010-08-24 22:39:14.358 VariableTest[1001:a0f] This is my age: 49
2010-08-24 22:39:14.362 VariableTest[1001:a0f] This is my paycheck amount: 5120.750000

You may notice that when printing out a floating-point number, the NSLog command

printed a bunch of extra zeroes. If you want to define how many numbers you want to

appear to the right of the decimal point, you need to specify the number of digits:

NSLog (@"This is my paycheck amount: %.2f", myPaycheck);

CHAPTER 5: Learning Objective-C 76

This code tells the computer to print the floating-point number with two digits to the

right of the decimal point:

2010-08-24 22:39:14.362 VariableTest[1001:a0f] This is my paycheck amount: 5120.75

NOTE: If your floating-point number has more digits than you’ve specified, your number will be
rounded. For example, suppose you have a floating-point number of 3.79 and you specify just
one digit to the right of the decimal point like %.1. Then your number will be rounded from 3.79

to 3.8.

Using Constants
Variables are handy for storing data that may vary. For example, you might create a

variable called yourAge where one person might type in a value of 43 and another person

might type in a value of 82.

However, sometimes you may need to create a fixed value. The most common use for a

fixed value, or constant, is when you need a specific value that represents something

that will never change within your program such as defining the number of letters in the

alphabet or defining a retirement age like 70.

To declare a constant, you need to use the #define command followed by the constant

name and its assigned value:

#define CONSTANTNAME Value

NOTE: When defining a constant, you do not need a semicolon at the end of the line.

The #define command tells the Xcode compiler that you’re creating a constant name

with a fixed value. Constant names can appear as a combination of uppercase and

lowercase characters:

#define constantName Value
#define CONSTANTName Value

Some programmers like to use all uppercase since uppercase letters are easy to spot.

Others prefer to use camel case that smashes together two or more words where the

first letter is lowercase but the first letter of each new word is uppercase:

#define myConstantName Value

For another way to clearly identify constants, some programmers begin every constant

name with a lowercase k:

#define kConstantName Value

Since there is no single “best” way to name constants, choose a method that makes

sense to you, and use it consistently.

CHAPTER 5: Learning Objective-C 77

The value you define for a constant can be any number or even a string:

#define iLoop 5
#define errorMessage @"Bad memory"

To see how you can use constants, modify the program you created in the previous

section (named VariableTest) by following these steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

#import "VariableTestAppDelegate.h"
#define kLoopCounter 5

@implementation VariableTestAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 int counter;
 int myAge = 49;
 float myPaycheck = 5120.75;
 for (counter = 0; counter < kLoopCounter; counter++)
 {
 NSLog (@"This is my age: %i", myAge);
 NSLog (@"This is my paycheck amount: %.2f", myPaycheck);
 }
}

@end

4. Choose File ➤ Save or press S.

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit the program, such as clicking the Stop button or choosing Product ➤ Stop

from the Xcode pull-down menus.

7. Choose Run ➤ Console, or press R. You should see the printed statements

created by the NSLog command:

2010-08-25 10:44:31.099 VariableTest[1702:a0f] This is my age: 49
2010-08-25 10:44:31.102 VariableTest[1702:a0f] This is my paycheck amount: 5120.75
2010-08-25 10:44:31.103 VariableTest[1702:a0f] This is my age: 49
2010-08-25 10:44:31.103 VariableTest[1702:a0f] This is my paycheck amount: 5120.75
2010-08-25 10:44:31.104 VariableTest[1702:a0f] This is my age: 49
2010-08-25 10:44:31.104 VariableTest[1702:a0f] This is my paycheck amount: 5120.75
2010-08-25 10:44:31.105 VariableTest[1702:a0f] This is my age: 49
2010-08-25 10:44:31.105 VariableTest[1702:a0f] This is my paycheck amount: 5120.75
2010-08-25 10:44:31.106 VariableTest[1702:a0f] This is my age: 49
2010-08-25 10:44:31.106 VariableTest[1702:a0f] This is my paycheck amount: 5120.75

CHAPTER 5: Learning Objective-C 78

In this example, you defined a constant to hold a value of 5. Then you used this constant

in a loop to tell the computer to repeat a block of code five times. To modify the number

of times your loop runs, you can simply modify the constant value (kLoopCounter) to a

new value such as 3 or 300.

This example used a single constant value in a loop just once, but imagine if you needed

to use the same constant value in 100 different places in your program. If you just typed

a number rather than use a constant value, you would have to change this number in

100 different places, increasing the chance of error.

By using a constant, you need to define the actual number only once, and then you’ll

automatically change the 100 other places in your program that relies on that constant

value. Constants simply help you use a fixed value repetitively throughout your program.

Using Mathematical Operators
Variables can store data, but every program needs to manipulate data somehow. For

numbers, the most common way to manipulate data involves mathematical operators,

as shown in Table 5–1.

Table 5–1. Mathematical Operators

Operator What It Does Example

+ Adds 6 + 12 = 18

- Subtracts 42.25 – 6.7 = 35.55

* Multiplies 4 * 9 = 36

/ Divides 70 / 10 = 7

% Modulo (divides two integers and

returns the remainder)

72 % 10 = 2

All of these mathematical operators can work with either integer or floating-point

numbers, except the modulo operator, which can work only with integers. The simplest

way to use mathematical operators is to use one per line:

85 + 6 = 91
91 * 7 = 637

Of course, you can also cram multiple mathematical operators on a single line, but you

have to make sure that the computer calculates numbers in the right order. For example,

what happens if you do the following?

85 + 6 * 7 = ???

Instead of getting 637, the computer would calculate 127. The reason for this is

something called precedence.

CHAPTER 5: Learning Objective-C 79

Normally the computer would just calculate results from left to right, but precedence

tells the computer which mathematical operators to calculate first. In a line that contains

two or more mathematical operators, Objective-C first calculates multiplication (*),

division (/), and modulo (%) first. Then it calculates addition (+) and subtraction (-).

In the previous example, the computer would first multiply 6 * 7 to get 42. Then it would

add 42 to 85 to get 127. In case you want the computer to add 85 to 6 first, you have to

surround those numbers in parentheses like this:

(85 + 6) * 7

This would cause the computer to add 85 to 6 and get 91, which would make the line

look like this:

91 * 7 = 637

If you have two or more mathematical operators that have equal precedence, the

computer simply calculates them from left to right. Consider the following:

12 + 9 – 7 + 3 - 45

First the computer would calculate 12 + 9 and get 21 like this:

21 – 7 + 3 - 45

Then it would calculate 21 – 7 and get 14 like this:

14 + 3 - 45

Adding 14 to 3 would get 17:

17 - 45

Finally, it would calculate the remaining mathematical operator and get -18.

As a general rule, always use parentheses when using multiple mathematical operators

on the same line. Parentheses clarify which mathematical operators the computer

calculates first.

Using Strings
Besides numbers, the second most common type of data that programs often need to

store and manipulate are strings, which are typically letters but can also include symbols

and even numbers. Some examples of a string include the following:

"Hello, world!"
"The RX-25 is defective, sir."
"45% of people spend $5.00 or more for lunch 90% of the time."

Unlike integer or floating-point numbers that have a built-in data type defined by the

Objective-C programming language, strings are treated as an object called NSString.

CHAPTER 5: Learning Objective-C 80

NOTE: To identify objects that have already been created by Apple, the object names will usually
begin with the NS prefix such as NSString. NS stands for NeXTSTEP, which is the operating

system that Apple used as a foundation to create Mac OS X.

Declaring a string variable is similar to declaring an integer or floating-point variable. The

main difference is that when you declare an NSString variable, you’re working with the

NSString object, so instead of declaring a variable, you’re actually declaring a pointer.

So, declaring an NSString variable looks like this:

NSString *pointerName;

Like all variables, you can assign a value to a variable at the same time you declare it:

NSString *myName = @"John Smith";

When using strings with NSString variables, you must always put the @ symbol in front of

the string, which is enclosed in double quotation marks.

Rather than assign a value to an NSString variable when you declare it, you can just

declare the variable and then assign a value to that variable on a different line:

NSString *myName;
myName = @"John Smith";

One key point to notice is that when you declare an NSString variable, you must use the

asterisk (*) symbol since it’s a pointer. However, when you assign a value to an NSString

variable, you omit the asterisk symbol.

To see how to use NSString variables, modify the VariableTest project by following these

steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored in the Classes folder. The code

for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSString *myName;
 myName = @"John Smith";
 int counter;
 int myAge = 49;
 float myPaycheck = 5120.75;
 for (counter = 0; counter < kLoopCounter; counter++)
 {
 NSLog (@"This is my age: %i", myAge);
 NSLog (@"This is my paycheck amount: %.2f", myPaycheck);
 }
 NSLog (@"This is my name: %@", myName);
}

4. Click the Build and Run button, or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

CHAPTER 5: Learning Objective-C 81

5. Quit the program, such as by clicking the Stop button or choosing Product ➤

Stop from the Xcode pull-down menus.

6. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-08-25 20:07:05.948 VariableTest[2781:a0f] This is my age: 49
2010-08-25 20:07:05.952 VariableTest[2781:a0f] This is my paycheck amount: 5120.75
2010-08-25 20:07:05.955 VariableTest[2781:a0f] This is my age: 49
2010-08-25 20:07:05.956 VariableTest[2781:a0f] This is my paycheck amount: 5120.75
2010-08-25 20:07:05.956 VariableTest[2781:a0f] This is my age: 49
2010-08-25 20:07:05.957 VariableTest[2781:a0f] This is my paycheck amount: 5120.75
2010-08-25 20:07:05.957 VariableTest[2781:a0f] This is my age: 49
2010-08-25 20:07:05.958 VariableTest[2781:a0f] This is my paycheck amount: 5120.75
2010-08-25 20:07:05.958 VariableTest[2781:a0f] This is my age: 49
2010-08-25 20:07:05.961 VariableTest[2781:a0f] This is my paycheck amount: 5120.75
2010-08-25 20:07:05.962 VariableTest[2781:a0f] This is my name: John Smith

Summary
Programming a Mac is similar to programming other types of computers in many ways

yet also is different in ways designed to make programming easier. One major difference

is that traditional programming forces you to create a single main program and fill it with

code. Xcode automatically creates a main program for you, which you’ll never need to

modify or even look at. Instead of filling your main program with code, Xcode lets you

store your code in separate files, which can run when a certain event occurs.

Like all programming languages, Objective-C uses a combination of symbols and

commands that look like complete words. To define the end of each line of code, you

must use a semicolon. To define a block of code, you use curly brackets. To give special

instructions to the Xcode compiler, you need to use the # symbol. For leaving comments

directly in your code, you use the // and /* and */ symbols for multiple lines.

Since Objective-C focuses on dividing a large program into objects, you’ll need to use

square brackets like [and] to identify when you’re working with objects. Typically when

you’re working with objects, you’ll need to use pointers, which are identified by the

asterisk (*) symbol.

The main purpose of any program is to store and manipulate data. Every program needs

to store data in a variable, which can be a number (integer or floating point), Boolean

value (YES or NO), or strings (defined by the predefined object NSString). When you need

to define a fixed value, you can create a constant using the #define command.

Once you understand the basics to using Xcode to create simple programs that can use

constants and different types of variables, you’ll be ready to start tackling more

complicated programs. Learning to program the Mac involves a combination of learning

Objective-C, learning Xcode, and learning the basic principles of object-oriented

programming. In the next chapter, you’ll learn more about making more complicated

types of programs that can make decisions or repeat one or more lines of code, which

can give your program more flexibility and versatility.

CHAPTER 5: Learning Objective-C 82

83

83

 Chapter

Making Decisions with
Branches
The simplest programs consist of one or more instructions or lines of code that the

computer follows sequentially, one after another. While such sequential ordering forms

the basis for programming, programs need greater flexibility to make decisions

depending on the current situation.

A branch provides the computer with a choice of two or more different sets of

instructions to follow. The simplest type of branch provides two choices, but there’s no

theoretical limit to the number of branches a program can have. A complicated program

may need to make hundreds or even thousands of possible decisions.

Computers decide which choice, or branch, to follow based entirely on a certain

condition, known as a Boolean condition or expression. In real life, people use Boolean

expressions all the time to make decisions.

Suppose you want to find something to eat. If you’re in a hurry, you might go to a fast-

food restaurant. If want a nicer meal, you might look for a sit-down restaurant. In each

case, your decision depends on a Boolean condition.

In the first example, the Boolean expression is whether you’re in a hurry or not, which

can evaluate to either YES or NO. In the second example, the Boolean expression is

whether you want a nicer meal. To make decisions, computers need to evaluate a

Boolean expression, which determines which branch of instructions to follow.

A typical branch in a video game might ask the user, “Continue playing?” Based on the

response (a Boolean expression that evaluates to YES or NO), one branch might run the

game over again while the second branch might end the game right away.

Branches and the sequential ordering of code represent two of the three basic building

blocks to creating programs. (The third building block is a loop, which you’ll learn more

about in Chapter 7.) Normally a branch contains one or more instructions arranged

sequentially, but a branch can contain other branches, as shown in Figure 6–1.

6

CHAPTER 6: Making Decisions with Branches 84

Figure 6–1. Branches can contain other branches.

Understanding Boolean Expressions
When making a decision, a person needs to examine a condition. For example, if it’s

raining, they might take an umbrella or wear a raincoat. In this case, the condition is

whether it’s raining or not. If so, take an umbrella or raincoat. If not, then don’t take

either one.

Computers also need to examine conditions to decide which branch of instructions to

follow. Such conditions always represent a True or False value, which are called

Boolean conditions, after Boolean logic.

In the Boolean condition of whether it’s raining or not, the Boolean value is either True or

False. If it’s True, that means it is raining. If it’s False, that means it is not raining.

To represent the values of True and False, programming languages treat the value of

True as 1 and the value of False as 0. In Objective-C, True values are represented as YES

and False values are represented as NO.

The simplest Boolean condition in Objective-C is simply a YES or NO:

if (YES)
{
 NSLog (@ "Hello, world!");
}

In the preceding example, the code simply prints “Hello, world!” because the condition

is always YES. This code is equivalent to the following:

CHAPTER 6: Making Decisions with Branches 85

NSLog (@ "Hello, world!");

A Boolean value of YES or NO is often assigned to a variable:

BOOL Flag = YES;

This code simply declares a Boolean variable, called Flag, and assigns it a value of YES.

Rather than assign a value, you could have just declared a Boolean variable and left its

value unknown:

BOOL Flag;

Before you could use such a Boolean variable, you would have to assign it a value of YES

or NO. While you can assign a value of YES or NO, it’s far more common to evaluate a

condition to determine its Boolean value. For example, to determine whether or not to

take an umbrella or raincoat, the Boolean condition might be as follows:

if (raining outside)
{
 take umbrella or raincoat;
}

Depending on whether or not it’s raining, this Boolean condition evaluates to either YES

or NO. In programming, the Boolean conditions are usually comparisons between two

different values. This comparison of values is known as an expression, an example of

which follows:

45 > 10

Since 45 is always greater than 10, this Boolean expression always evaluates to YES.

Obviously, this is no different from simply replacing the entire 45 > 10 expression with

YES. To make such Boolean expressions more useful, it’s more common to replace one

or more fixed values with a variable. Since the value of a variable can change, this

causes the Boolean expression to vary as well.

For example, consider this Boolean expression:

X > 10

Depending on the actual value of X, this Boolean expression evaluates to either YES or

NO. If the value of X is 11 or greater, then this Boolean expression evaluates to YES. If the

value of X is 10 or less, it evaluates to NO.

A Boolean expression can even compare two different variables:

X > Y

This Boolean expression varies depending on the actual values stored in the X and Y

variables.

A Boolean expression can even compare mathematical calculations:

X + 15 > Y - 47

There’s actually no limit to the number of variables you can use in a Boolean expression.

No matter how many variables are used, the Boolean expression always evaluates to

CHAPTER 6: Making Decisions with Branches 86

either YES or NO. For example, the following expression would evaluate to YES or NO

depending on the values of the four variables:

X + 15 + Z > Y – 47 + W

Boolean Comparison Operators
A Boolean expression compares two values to determine a YES or NO value. To compare

two values, you have to use a Boolean comparison operator. Table 6–1 lists the various

Boolean comparison operators.

Table 6–1. Boolean Comparison Operators

Boolean Operator Meaning

== Equal

!= Not equal

> Greater than

>= Greater than or equal

< Less than

<= Less than or equal

NOTE: Unlike some programming languages, to compare whether two values are equal in
Objective-C, you have to use double equal signs. If you use a single equal sign, the computer will

think you’re assigning a value to a variable, such as X = 18. Forgetting this second equal sign is

a common error when writing a Boolean expression to compare whether two values are equal.

Assuming that the value of X is 28, Tables 6–2 shows how the computer would evaluate

the various Boolean expressions.

Table 6–2. Evaluating Boolean Expressions

Boolean Expression Evaluates To

X == 45 NO

X != 45 YES

X > 45 NO

X >= 45 NO

X < 45 YES

X <= 45 YES

CHAPTER 6: Making Decisions with Branches 87

On each side of a Boolean comparison operator, you can have any of the following:

 A value, such as 128 > 344

 A variable that can represent different values, such as X > 344 or 128
> Y

 A mathematical expression with a variable, such as X + 23 > 344

Suppose you had a Boolean expression as follows:

X = 36;
if (X < 98)
{
 NSLog (@"Hello, world!");
}

The first step that the computer would take is to substitute the value of X into the

(X < 98) Boolean expression like this:

if (36 < 98)
{
 NSLog (@"Hello, world!");
}

The Boolean expression (36 < 98) evaluates to YES, so the next step would look like

this:

if (YES)
{
 NSLog (@"Hello, world!");
}

This code just boils down to this:

NSLog (@"Hello, world!");

Boolean Logical Operators
Just as mathematical operators let you calculate new values with numbers, Boolean

logical operators let you calculate new values using Boolean expressions. Boolean

logical operators are useful to evaluate two Boolean expressions.

The following are the four types of Boolean logical operators:

 && (And)

 || (Or)

 ^ (Xor)

 ! (Not)

CHAPTER 6: Making Decisions with Branches 88

The ! (Not) Operator
The ! (Not) operator is the simplest Boolean logical operator to understand since it

simply reverses the value of a Boolean expression. For example:

!(YES) = NO
!(NO) = YES

Assume the value of X is 57 in the following Boolean expression:

!(X == 86)

First, the computer would substitute X with 57 in the Boolean expression as follows:

!(57 == 86)

Now the computer evaluates this Boolean expression to NO:

!(NO)

The ! operator reverses the Boolean value so that the entire Boolean expression

evaluates to the following:

!(NO) = YES

The ! operator may look puzzling as to its purpose, but consider a program that verifies

whether the user typed in a valid password. The loop might look like this:

while !(validPassword)
{
 Ask for password;
}

This code tells the computer that as long as the password is not valid, it should keep

asking for a password.

The && (And) Operator
Sometimes you may need to combine two Boolean expressions to create a single

Boolean value. For example, suppose you wanted to decide whether to take an

umbrella. First, you might check if it’s raining. Then you might check if you need to go

out. If both of these Boolean conditions are YES, then you would take an umbrella.

Writing this out like code might look like this:

if (raining outside) && (need to go outside)
{
 take umbrella;
}

If the Boolean expression (raining outside) is NO, then you won’t need to take an

umbrella regardless of whether you need to go outside or not. Likewise, if the Boolean

expression (need to go outside) is NO, then it doesn’t matter if it’s raining or not since

you won’t need an umbrella.

The && operator takes two Boolean values and calculates a new result, as shown in

Table 6–3.

CHAPTER 6: Making Decisions with Branches 89

Table 6–3. The && (And) Operator Table

$$ NO YES

NO NO && NO = NO NO && YES = NO

YES YES && NO = NO YES && YES = YES

When calculating a new result with the && operator, the Boolean expression represents

YES only if both conditions represent YES. If either condition is NO, then the entire Boolean

operation is also NO.

The || (Or) Operator
Another way to combine two Boolean expressions to create a single Boolean value is

through the || (Or) operator. The || operator takes two Boolean values and calculates a

new result, as shown in Table 6–4.

Table 6–4. The || (Or) Operator Table

|| NO YES

NO NO || NO = NO NO || YES = YES

YES YES || NO = YES YES || YES = YES

When calculating a new result with the || operator, the Boolean expression represents

YES if either one (or both) of the conditions also represents YES. If both conditions are NO,

then the entire Boolean operation is NO.

For example, suppose you wanted to decide whether to wear boots. First, you might

check if it’s raining. Second, you might check if it’s snowing. If either of these Boolean

conditions is YES, then you would wear boots. Writing this out as code might look like

this:

if (raining outside) || (snowing outside)
{
 wear boots;
}

You need to wear boots if (raining outside) is YES or (snowing outside) is YES. The

only time the entire Boolean expression does not evaluate to YES is when both Boolean

conditions evaluate to NO.

CHAPTER 6: Making Decisions with Branches 90

The ^ (Xor) Operator
Yet another way to combine two Boolean expressions to create a single Boolean value

is through the ^ (Xor) operator. The ^ operator (also called an exclusive Or) takes two

Boolean values and calculates a new result, as shown in Table 6–5.

Table 6–5. The ^ (Xor) Operator Table

^ NO YES

NO NO ^ NO = NO NO ^ YES = YES

YES YES ^ NO = YES YES ^ YES = NO

With the ^ operator, two Boolean expressions evaluate to NO when both are identical

(both NO or both YES). If the two Boolean expressions are different, then they always

evaluate to YES.

NOTE: The Xor operator is often used in encryption. One of the simplest encryption algorithms is

called the XOR cipher.

Once you understand Boolean expressions, including both comparison and logical

operators, you’ll be ready to use Boolean expressions in branches and loops when

writing your own programs.

Branches
A branch defines two or more possible sets of instructions (code) for the computer to

follow, based on a Boolean expression that evaluates to YES or NO. In Objective-C, the

two most common types of branches are the if and switch statements.

An if statement lets you choose between two or more alternative sets of instructions to

follow. A switch statement behaves exactly like an if statement, but it’s simpler to write

when you need to provide a large number of alternative sets of instructions.

The Simplest if Statement
The if statement gets its name because it checks a single Boolean expression. If this

Boolean expression is YES, then the if statement follows one or more instructions. If this

Boolean expression is NO, then it doesn’t do anything.

The simplest if statement lets you run exactly one instruction based on a Boolean

expression. In Objective-C, this simple if statement looks like this:

CHAPTER 6: Making Decisions with Branches 91

if (Boolean expression) instruction;

To see how to use this simple if statement, modify the VariableTest project from

Chapter 5 by following these steps:

1. Open the VariableTest project from the previous chapter.

2. Click the VariableTestAppDelegate.m file stored inside the Classes

folder. The code for that file appears in the middle pane of the Xcode

window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 BOOL Flag = YES;
 if (Flag) NSLog (@"It works!");
 }

4. Choose File ➤ Save, or press ! S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As

long as you didn’t mistype anything, you should see a blank window

pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤

Stop.

7. Choose Run ➤ Console or press " ! R. You should see the printed

statements created by the NSLog command:

2010-08-28 14:51:51.162 VariableTest[9492:a0f] It works!

Following Multiple Instructions in an if Statement
The simplest if statement lets you run only one instruction if a Boolean expression is

YES. In most cases, you’ll need to run two or more instructions if a Boolean expression is

YES. To do this, you need to use curly brackets around the instructions you want to run:

if (Boolean expression) {
 instruction1;
 instruction2;
}

To make the curly brackets more visible, you could just place the beginning, left curly

bracket on a separate line:

if (Boolean expression)
{
 instruction1;
 instruction2;
}

In either case, using curly brackets lets you run two or more instructions if a Boolean

expression is YES.

CHAPTER 6: Making Decisions with Branches 92

The if-else Statement
The if statement runs one or more instructions if a Boolean expression is YES. However,

if the Boolean expression is NO, then the if statement doesn’t run any instructions.

There may be times when you want the computer to follow one set of instructions if a

Boolean expression is YES, but follow another set of instructions if the Boolean

expression is NO. In such cases, you have two choices.

First, you can create two separate if statements:

if (Boolean expression == YES)
{
 instruction1;
 instruction2;
}
if (Boolean expression == NO)
{
 instructionA;
 instructionB;
}

No matter what the Boolean expression may be (either YES or NO), the instructions in one

of these if statements will run. Of course, writing two separate if statements can be

clumsy, so Objective-C offers an if-else statement that lets you define two sets of

instructions to follow:

if (Boolean expression == YES)
{
 instruction1;
 instruction2;
}
else
{
 instructionA;
 instructionB;
}

This single if-else statement makes much clearer which set of instructions the

computer will follow depending on the value of the Boolean expression. If it’s YES, then

the computer follows the first set of instructions. If it’s NO, then the computer follows the

second set of instructions.

The if-else if Statement
The if-else statement runs either one set of instructions or a second set of instructions.

If the computer does not follow the first set of instructions, it always follows the second

set of instructions.

However, you may not want the computer to run a second set of instructions

automatically. Instead, you may want to evaluate a second Boolean expression before

running the second set of instructions. Such an if-else if statement looks like this:

if (Boolean expression 1 == YES)
{

CHAPTER 6: Making Decisions with Branches 93

 instruction1;
 instruction2;
}
else if (Boolean expression 2 == YES)
{
 instructionA;
 instructionB;
}

Although it’s similar to the ordinary if-else statement, the if-else if statement works

a lot differently. If Boolean expression 1 is YES, then the computer runs only the first set

of instructions (instruction1 and instruction2). If Boolean expression 1 is NO, then the

computer evaluates Boolean expression 2.

If Boolean expression 2 is YES, then the computer follows the second set of instructions

(instructionA and instructionB). However, if Boolean expression 2 is NO, then the

computer winds up not following any of the instructions.

The preceding if-else if statement could be rewritten as follows:

if (Boolean expression 1 == YES)
{
 instruction1;
 instruction2;
}

if (Boolean expression 1 == NO) && (Boolean expression 2 == YES)
{
 instructionA;
 instructionB;
}

For the computer to follow the second set of instructions (instructionA and

instructionB), two conditions must be met. First, Boolean expression 1 must be NO.

Second, Boolean expression 2 must be YES.

In addition to letting you evaluate a Boolean expression before running each set of

instructions, another advantage of the if-else if statement is that it lets you choose

from two or more sets of instructions, such as in this example:

if (Boolean expression 1 == YES)
{
 instruction1;
 instruction2;
}
else if (Boolean expression 2 == YES)
{
 instructionA;
 instructionB;
}
else if (Boolean expression 3 == YES)
{
 instructions3;
 instructions4;
}
else if (Boolean expression 4 == YES)
{

CHAPTER 6: Making Decisions with Branches 94

 instructionsC;
 instructionsD;
}

Unfortunately, the more alternative sets of instructions you include in the if-else if

statement, the messier your code gets and the harder it is to read. If you need to check

a Boolean expression before running multiple alternative instructions, it’s simpler to use

a switch statement.

The switch Statement
The switch statement is often used to provide a large number of alternative instructions

for the computer to follow. The main difference is that a switch statement tries to match

a variable to a constant value. For example, consider these two if statements:

if (X == 45)
{
 instruction1;
 instruction2;
}

if (X == 97)
{
 instructionA;
 instructionB;
}

The equivalent switch statement might look like this:

switch (X)
{
 case 45:
 instruction1;
 instruction2;
 break;

 case 97:
 instructionA;
 instructionB;
 break;
}

Rather than just evaluate a YES or NO value, the switch statement takes a value and tries

to match it. If the value matches to a specific value, then the computer runs that set of

instructions:

switch (expression)
{
 case match1:
 instruction1;
 instruction2;
 break;

 case match2:
 instruction3;
 instruction4;

CHAPTER 6: Making Decisions with Branches 95

 break;

 case match3:
 instruction5;
 instruction6;
 break;

 default:
 instructionA;
 instructionB;
 break;
}

This switch statement is equivalent to the following if statements:

if (expression == match1)
{
 instruction1;
 instruction2;
}

if (expression == match2)
{
 instruction3;
 instruction4;
}

if (expression == match3)
{
 instruction5;
 instruction6;
}
else
{
 instructionA;
 instructionB;
}

The switch statement is somewhat unusual for two reasons. First, you do not use curly

brackets to enclose multiple lines of code inside the switch statement. Second, at the

end of each set of instructions, you need to use a break command.

The break command simply tells the computer to stop following instructions. Without

this break command, the computer would simply keep following instructions stored in

another part of the switch statement. For example, consider the following switch

statement where the break command is missing:

switch (expression)
{
 case match1:
 instruction1;
 instruction2;

 default:
 instructionA;
 instructionB;
 break;

CHAPTER 6: Making Decisions with Branches 96

}

This is actually equivalent to the following, which is probably not what you want:

switch (expression)
{
 case match1:
 instruction1;
 instruction2;
 instructionA;
 instructionB;
 break;

 default:
 instructionA;
 instructionB;
 break;
}

The case and break commands define the beginning and the end of a group of

instructions. If you omit the break command, the computer will get confused and run

additional instructions that you didn’t intend.

NOTE: Omitting a break command is the number one cause of errors when using the switch

statement.

By purposely omitting the break command, you can match multiple values to the same

set of instructions:

switch (expression)
{
 case match1:
 case match2:
 instruction1;
 instruction2;
 break;

 default:
 instructionA;
 instructionB;
 break;
}

The preceding switch statement is equivalent to the following:

if (expression == match1) || (expression == match2)
{
 instruction1;
 instruction2;
}
else
{
 instructionA;
 instructionB;
}

CHAPTER 6: Making Decisions with Branches 97

To see how to use a simple switch statement, modify the VariableTest project from the

section “The Simplest if Statement,” earlier in this chapter, by following these steps:

1. Open the VariableTest project.

2. Click the VariableTestAppDelegate.m file stored inside the Classes

folder. The code for that file appears in the middle pane of the Xcode

window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 int X = 2;
 switch (X)
 {
 case 1:
 NSLog (@"X = 1");
 break;
 case 2:
 NSLog (@"X = 2");
 break;
 default:
 NSLog (@"Default code");
 break;
 }
}

4. Choose File ➤ Save or press ! S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As

long as you didn’t mistype anything, you should see a blank window

pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤

Stop.

7. Choose Run ➤ Console or press " ! R. You should see the printed

statements created by the NSLog command:

2010-08-28 17:59:32.654 VariableTest[9921:a0f] X = 2

Go back and change the first line in the applicationDidFinishLoading method to the

following:

int X = 1;

Now if you run this program and view the log window, you’ll see this:

2010-08-28 17:59:32.654 VariableTest[9921:a0f] X = 1

Go back and change the first line one more time, to the following:

int X = 99;

Now if you run this program and view the log window, you’ll see this:

2010-08-28 17:59:32.654 VariableTest[9921:a0f] Default code

CHAPTER 6: Making Decisions with Branches 98

By examining the switch statement, you can see exactly how it behaves based on the

value that you give it for X.

Summary
To make decisions, computers rely on Boolean expressions that represent a YES or NO

value. The simplest Boolean expressions are YES or NO values, but more complex

Boolean expressions rely on comparison operators and logical operators.

Comparison operators compare two values to determine a YES or NO value. The six types

of comparison operators include == (equal), != (not equal), > (greater than), >= (greater

than or equal to), < (less than), and <= (less than or equal to).

Logical operators change the value of a Boolean expression somehow. The four types of

logical operators are ! (Not), && (And), || (Or), and ^ (Xor).

Boolean expressions are always used in branching statements to determine which set of

instructions to follow. The simplest type of branching statement is an if statement that

runs exactly one instruction if a Boolean expression is YES.

Since running a single instruction is limited, most if statements can run one or more

instructions, enclosed by curly brackets.

For greater flexibility, you can also use an if-else statement, which provides two sets of

instructions for the branching statement to choose from. For even greater flexibility,

there’s also an if-else if statement, which lets the computer evaluate a Boolean

expression before running any set of instructions.

The if-else if statement can let you create an unlimited number of alternative sets of

instructions to follow, but to make these branches easier to understand, you can often

replace the if-else if statement with a switch statement. The switch statement

examines a variable and compares that variable to fixed values to determine which set

of instructions to follow.

Branching statements give your program the power to react to the user and outside

data. As a result, branching statements represent one of the three main building blocks

(the other two being loops and the sequential ordering of instructions) for creating any

program.

99

99

 Chapter

Repeating Code with
Loops
The three basic building blocks for creating programs are the sequential ordering of

code, branches (to make decisions), and loops (to run one or more instructions

repetitively). Rather than write one long set of instructions to accomplish a task, a loop

lets you write a shorter set of instructions that runs multiple times.

Suppose your program needs to ask for a password from the user before granting

access. You could write a bunch of code that keeps checking for a valid password, but

this gives you no idea ahead of time how many times someone may try to type in a valid

password. With a loop, you just need to write one set of instructions for checking the

validity of a password and, if it’s valid, granting the user access. The loop can run as

many times as necessary, depending on how many times the user tries to type in a valid

password. By letting your program respond to uncertainty, loops give your program

greater versatility in working in the real world.

All loops run one or more instructions repetitively, but there are two types of loops. One

type of loop runs a fixed number of times. In Objective-C, this is called a for loop. For

example, if you want to give users only three chances to type in a valid password, you

could create a loop that runs only three times. The moment the user tries to type in a

password a fourth time, your program can stop running and simply deny access

altogether.

The second type of loop can run zero or more times, depending on circumstances

determined by a Boolean expression. In Objective-C, this is called a while loop. For

example, a loop might keep running until the user types in a valid password. That could

happen on the first try or the twenty-third try. Since you can’t predict ahead of time

when a loop should end, you have to let the loop keep running until a certain condition

(Boolean expression) is met.

Whereas branches let the computer make decisions, loops let the computer react to

uncertainty. When writing Mac programs, you can freely use both types of loops in

different parts of your program.

7

CHAPTER 7: Repeating Code with Loops 100

Loops That Run a Fixed Number of Times
The easiest loop to understand is one that runs a fixed number of times, such as 10 or

20 times. By defining exactly how many times you want a loop to run, you can ensure

that the loop always ends eventually.

NOTE: If a loop never ends, the program can appear to freeze or hang up. Such never-ending
loops are called endless loops, and they’re the biggest pitfall to avoid when using loops in your

program.

To create a loop that runs a fixed number of times, you use a for statement, which looks

like this:

int countingVariable
for (initialValue; BooleanExpression; incrementExpression)
{
 instructions;
}

A for statement consists of four items:

 A counting variable

 An initial value

 A Boolean expression

 An increment expression

The counting variable is defined as an integer before the loop and is used to keep track

of how many times the loop has run.

The initial value defines the number that the counting variable is set to when the loop

starts. Usually this initial value is 0 or 1, but it can be any value.

The Boolean expression defines when the loop will run. The loop will stop after the

counting variable has reached a certain value, such as 4. That means the loop might run

four times (depending on its initial value).

The increment expression defines how the counting variable changes. Usually the

counting variable changes by 1, but you can define this increment change by any

number such as 2, 4, or even a negative number like –3.

To see how to create a loop using the for statement, follow these steps:

1. Open the VariableTest project from the previous chapter.

2. Click the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

CHAPTER 7: Repeating Code with Loops 101

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 int i;
 for (i = 0; i < 5; i++)
 {
 NSLog (@"The value of i = %i", i);
 }
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

7. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-08-29 13:23:41.515 VariableTest[11731:a0f] The value of i = 0
2010-08-29 13:23:41.519 VariableTest[11731:a0f] The value of i = 1
2010-08-29 13:23:41.521 VariableTest[11731:a0f] The value of i = 2
2010-08-29 13:23:41.521 VariableTest[11731:a0f] The value of i = 3
2010-08-29 13:23:41.522 VariableTest[11731:a0f] The value of i = 4

In this example, the counting variable is i, the initial value is i = 0, and the Boolean

expression is i < 5. That means as long as this Boolean expression evaluates to YES

(where i is a value less than 5), the loop keeps running. As soon as the Boolean

expression i < 5 evaluates to NO (where the value of i equals 5 or greater), then the loop

stops.

The increment expression is i++, which is a shortcut for i = i+ 1. The i++ increment

expression simply counts by 1. If you wanted to count by a different value, you could

replace the i++ expression with something else such as i = i + 4.

The for loop currently runs exactly five times, but you could create a loop that runs five

times by using different initial values, Boolean expressions, and increment expressions.

For example, this loop also runs five times:

int i;
for (i = 105; i > 100; i--)
 {
 NSLog (@"The value of i = %i", i);
 }

If you modify the VariableTest program with this loop, the output looks like this:

2010-08-29 17:31:56.230 VariableTest[12128:a0f] The value of i = 105
2010-08-29 17:31:56.237 VariableTest[12128:a0f] The value of i = 104
2010-08-29 17:31:56.238 VariableTest[12128:a0f] The value of i = 103
2010-08-29 17:31:56.239 VariableTest[12128:a0f] The value of i = 102
2010-08-29 17:31:56.240 VariableTest[12128:a0f] The value of i = 101

In this case, the loop is counting backward from 105 down to 101. The i-- increment

expression is equivalent to i = i – 1.

CHAPTER 7: Repeating Code with Loops 102

By changing the initial value, the Boolean expression, and the increment expression, you

can define how many times you want the loop to run.

NOTE: There’s another for loop called fast enumeration, which you’ll learn more about in the
chapters about arrays (Chapter 8) and dictionaries (Chapter 9). Essentially, fast enumeration lets

you scan through a list of data stored in an array or dictionary without having to count at all.

Quitting a for Loop Prematurely
A for loop always runs a fixed number of times. However, you can stop a for loop

prematurely by using the break command along with an if statement inside the for

loop:

int i;
for (i = 0; i < 5; i++)
 {
 instructions;
 if (passwordValid)
 {
 break;
 }
 }

This for loop might give the user five tries to type in a valid password before blocking

access altogether. However, if at any time the user types in a valid password, you want

to exit the loop that checks for a valid password and grant access to the user.

To see how the break command can exit a loop prematurely, follow these steps:

1. Open the VariableTest project from the previous section

2. Click the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 int i;
 for (i = 0; i < 5; i++)
 {
 NSLog (@"The value of i = %i", i);
 if (i == 2)
 {
 break;
 }
 }
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

CHAPTER 7: Repeating Code with Loops 103

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

7. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-08-29 21:07:53.000 VariableTest[12825:a0f] The value of i = 0
2010-08-29 21:07:53.006 VariableTest[12825:a0f] The value of i = 1
2010-08-29 21:07:53.007 VariableTest[12825:a0f] The value of i = 2

Notice that instead of running five times, the loop stopped prematurely (as soon as the

value of i equals 2) after running only three times.

Skipping in a for Loop
Instead of prematurely exiting a loop, you can force a for loop to skip by using the

continue command. Skipping stops the loop from running any remaining instructions in

the loop and forces the loop to start over again, but without resetting the counting

variable. Like the break command that prematurely exits a loop, the continue command

also uses an if statement to determine when to skip or not:

int i;
for (i = 0; i < 5; i++)
 {
 if (Boolean expression)
 {
 continue;
 }
 instruction1;
 }

If the Boolean expression evaluates to YES, then the computer runs the continue

command and immediately jumps back to the top of the loop without running

instruction1. If you place instructions ahead of the continue command, those

instructions will always run. Any instructions that immediately follow the continue

command will get skipped if the continue command runs.

To see how the continue command works to print only even numbers, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 int i;
 for (i = 0; i < 5; i++)
 {
 if ((i % 2) != 0)
 {
 continue;
 }
 NSLog (@"The value of i = %i", i);

CHAPTER 7: Repeating Code with Loops 104

 }
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

7. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-08-29 23:17:25.785 VariableTest[13046:a0f] The value of i = 0
2010-08-29 23:17:25.789 VariableTest[13046:a0f] The value of i = 2
2010-08-29 23:17:25.790 VariableTest[13046:a0f] The value of i = 4

Loops That Run Zero or More Times
Sometimes you may need a loop to run based on an outside condition that you can’t

predict ahead of time. Other times you may not want the loop to run even once

depending on outside conditions. In both of these cases, you need to choose a different

type of loop, either a while loop or a do-while loop.

The while Loop
The while loop can run zero or more times and looks like this:

while (Boolean expression)
 {
 instructions;
 instructions that can change Boolean expression;
 }

The while loop repeats one or more instructions and consists of three parts:

 A Boolean expression

 Instructions to repeat

 Instructions that modify the Boolean expression

The Boolean expression determines whether the loop should run. If the Boolean

expression evaluates to NO, it’s possible that the while loop won’t run at all.

The second part of the while loop, the instructions to repeat, can be a single instruction

or a group of instructions.

The third, and most important, part of the while loop are instructions that can change

the Boolean expression. If you omit instructions that can change the Boolean

expression, the Boolean expression can never change from YES to NO, resulting in an

endless loop that will hang up or freeze your program, keeping it from working properly.

CHAPTER 7: Repeating Code with Loops 105

To see how the while loop works, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 int i;
 i = 0;
 while (i < 5)
 {
 NSLog (@"The value of i = %i", i);
 i++;
 }
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

7. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-08-30 19:41:31.559 VariableTest[14914:a0f] The value of i = 0
2010-08-30 19:41:31.562 VariableTest[14914:a0f] The value of i = 1
2010-08-30 19:41:31.564 VariableTest[14914:a0f] The value of i = 2
2010-08-30 19:41:31.564 VariableTest[14914:a0f] The value of i = 3
2010-08-30 19:41:31.565 VariableTest[14914:a0f] The value of i = 4

The first two lines create an integer variable (i) and initialize its value to 0. The Boolean

expression is (i < 5). Since i contains 0, the Boolean expression (i < 5) evaluates to

YES, causing the while loop to run.

Inside the while loop, the NSLog command simply prints the current value of i. The other

instruction inside the while loop, i++, changes the value of the i variable. This allows the

(i < 5) Boolean expression to evaluate to NO, causing the while loop to stop running

eventually.

The do-while Loop
The do-while loop always runs at least once and looks like this:

do
 {
 instructions;
 instructions that can change Boolean expression;
 } while (Boolean expression);

CHAPTER 7: Repeating Code with Loops 106

Like the while loop, the do-while loop also consists of three parts: instructions to

repeat, instructions to change the loop’s Boolean expression, and the Boolean

expression. Since the do-while loop checks its Boolean expression only after it runs

through its instructions, the do-while loop always runs at least once.

To see how the do-while loop works, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 int i;
 i = 0;
 do
 {
 NSLog (@"The value of i = %i", i);
 i++;
 } while (i < 5);
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

7. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-08-30 19:41:31.559 VariableTest[14914:a0f] The value of i = 0
2010-08-30 19:41:31.562 VariableTest[14914:a0f] The value of i = 1
2010-08-30 19:41:31.564 VariableTest[14914:a0f] The value of i = 2
2010-08-30 19:41:31.564 VariableTest[14914:a0f] The value of i = 3
2010-08-30 19:41:31.565 VariableTest[14914:a0f] The value of i = 4

Quitting a while or do-while Loop Prematurely
Just as you can exit a for loop prematurely using the break command, you can exit a

while or do-while loop using the break command. Typically, you use an if-then

statement to determine when to break:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 int i;
 i = 0;
 do
 {
 NSLog (@"The value of i = %i", i);
 i++;
 if (i == 2)
 {

CHAPTER 7: Repeating Code with Loops 107

 break;
 }
 } while (i < 5);
}

This do-while loop runs twice before exiting as soon as the value of i equals 2, printing

the following:

2010-08-30 20:12:20.535 VariableTest[15016:a0f] The value of i = 0
2010-08-30 20:12:20.537 VariableTest[15016:a0f] The value of i = 1

Skipping a while or do-while Loop
You can use the continue command to cause the while or do-while loop to skip over its

instructions and return to the beginning. Typically, you use an if statement to determine

when to skip:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 int i;
 i = 0;
 do
 {
 i++;
 if ((i % 2) != 0)
 {
 continue;
 }
 NSLog (@"The value of i = %i", i);
 } while (i < 5);
}

Running this program would print the following:

2010-08-30 20:22:51.675 VariableTest[15138:a0f] The value of i = 2
2010-08-30 20:22:51.683 VariableTest[15138:a0f] The value of i = 4

Nested Loops
Loops typically contain one or more instructions arranged sequentially. However, it’s

possible for a loop to contain instructions organized in a branch or even another loop.

When one loop appears inside another loop, that’s called a nested loop, an example of

which is shown in Figure 7–1.

CHAPTER 7: Repeating Code with Loops 108

Figure 7–1. A nested loop occurs when one loop appears inside of another one.

When one loop is nested inside another one, the inner loop must always finish running

first before the outer loop can finish. The inner loop can even change the Boolean

expression that the outer loop depends on, but if you try this, make sure that the outer

loop eventually ends or you risk creating an endless loop.

It’s possible to nest a while loop inside a for loop, or vice versa. Although there’s no

limit to the number of loops you can nest within one another, each nested loop makes

understanding how the program works more difficult, which could result in unpredictable

behavior if you incorrectly modify any code inside any of the nested loops. Use nested

loops only when absolutely necessary to make your programs easier to understand.

To see how nested loops work, follow these steps:

1. Open the VariableTest project from the previous chapter.

2. Click the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 int i;
 int j;
 i = 0;
 do
 {
 NSLog (@"Outer loop %i", i);
 for (j = 0; j < 3; j++)

CHAPTER 7: Repeating Code with Loops 109

 {
 NSLog (@" Inner loop number %i", j);
 }
 i++;
 } while (i < 3);
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

7. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-08-30 20:50:53.176 VariableTest[15388:a0f] Outer loop 0
2010-08-30 20:50:53.179 VariableTest[15388:a0f] Inner loop number 0
2010-08-30 20:50:53.181 VariableTest[15388:a0f] Inner loop number 1
2010-08-30 20:50:53.182 VariableTest[15388:a0f] Inner loop number 2
2010-08-30 20:50:53.182 VariableTest[15388:a0f] Outer loop 1
2010-08-30 20:50:53.183 VariableTest[15388:a0f] Inner loop number 0
2010-08-30 20:50:53.183 VariableTest[15388:a0f] Inner loop number 1
2010-08-30 20:50:53.184 VariableTest[15388:a0f] Inner loop number 2
2010-08-30 20:50:53.185 VariableTest[15388:a0f] Outer loop 2
2010-08-30 20:50:53.186 VariableTest[15388:a0f] Inner loop number 0
2010-08-30 20:50:53.186 VariableTest[15388:a0f] Inner loop number 1
2010-08-30 20:50:53.187 VariableTest[15388:a0f] Inner loop number 2

Both the inner and outer loops run exactly three times. However, notice that the inner

loop repeats multiple times, but the outer loop runs only once.

Summary
Loops represent the third basic building block for creating programs, in addition to

sequential instructions and branches. Loops run one or more instructions repetitively.

The two types of loops you can create are for and while loops.

Use the for loop when you know exactly how many times you want to run a loop. Use a

while loop or do-while loop when you don’t know how many times a loop should

repeat, so that your program can adapt to outside circumstances.

If you want a loop to run zero or more times, use the while loop. If you need the loop to

run at least once, then use the do-while loop. With both the while loop and do-while

loop, you must change the Boolean expression inside your loop. If you fail to change the

loop’s Boolean expression, you risk creating an endless loop.

For greater flexibility, you can nest loops inside one another. Since nested loops can be

harder to understand, use nested loops sparingly. Just remember that the inner loop

must always runs first before the outer loop can finish.

CHAPTER 7: Repeating Code with Loops 110

Loops enable your program to run one or more instructions repetitively. Although loops

can eliminate the need to write multiple lines of identical (or nearly identical) instructions,

loops do make your programs harder to understand. Combining loops with sequential

instructions and branches allows you to create virtually any type of program you wish.

111

111 111

 Chapter

Understanding the Cocoa
Framework
Up until this point in the book, you’ve been learning the basic principles of

programming. First, you learned about the three basic building blocks of programming

(sequential instructions, branches, and loops). Next, you learned about Boolean

expressions, mathematical operators, variables, and constants.

While it’s perfectly possible to create a program using what you’ve learned so far,

programming for the Mac is much harder because you have to write code to create and

display your user interface, code to perform common functions, and code to make your

program do something unique.

To make Mac programming easier, Apple provides a library of prewritten and tested

code, organized in something called the Cocoa framework. This library of code uses the

features of object-oriented programming (which you’ll learn more about in Chapter 9) to

store useful code to create your user interface or manipulate or store data. By using

these Cocoa framework files (called classes in object-oriented programming) provided

by Apple, you can reduce the amount of code you need to write so you can create

programs faster that are more reliable.

In traditional programming, you would need to write three sets of code to create your

user interface, perform common functions, and do something unique to your program.

By relying on the Cocoa framework, you can just focus on writing code that makes your

program unique, which essentially cuts the amount of code you need to write by one-

third, as shown in Figure 8–1.

8

CHAPTER 8: Understanding the Cocoa Framework 112

Figure 8–1. Object-oriented programming can make Mac programming much simpler and faster.

To use the Cocoa framework, you need to understand how object-oriented

programming works, which is the focus of this chapter. Once you understand the basic

principles behind object-oriented programming, you’ll understand better how to take

advantage of Apple’s Cocoa framework. As a general rule, always check the Cocoa

framework for code before you try to write your own code. In many cases, you’ll find that

you can reuse the code you need, or at least write less of it yourself, to create a fully

functional program.

An Overview of How Object-Oriented Programming
Works
Before getting into the details of using object-oriented programming in your own

programs, you need to understand how object-oriented programming works in general.

Once you understand what you’re doing, you’ll better understand the actual details of

writing Objective-C code using objects.

CHAPTER 8: Understanding the Cocoa Framework 113

Starting with a Class
To use an object-oriented programming language like Objective-C, you must first write

code that defines a class. A class determines what types of data (called properties) the

class can hold and the subprograms (called methods) that the class provides to do

something such as manipulate the data stored in its properties.

Although you’ll likely need to create your own classes, Apple provides an entire library of

classes for you to use, stored in the Cocoa framework. By using the classes of the

Cocoa framework, you can write a simple program without ever writing your own

classes at all.

A class file by itself simply groups related properties and methods in one location. To

actually use a class in your program, you must create (or instantiate) an object from that

class. Each time you create an object from a class, you can then use that object to store

data in its properties and manipulate that object somehow using its methods.

Objects are arbitrary ways to group related data and the subprograms that manipulate

that data. Just as there are a million different ways to write a program that works

identically, there are also a million different ways to organize data and subprograms into

objects.

A single program typically consists of multiple objects that often represent a different

physical part of a problem. For example, if you’re writing a program to control a train,

one object might represent the engine, another object might represent the wheels, and a

third object might represent the brakes.

Ideally, when you divide a large program into multiple objects, those objects act like

isolated islands. To make a program work, your multiple objects need to cooperate with

one another, which they do by passing information (or messages) to each other.

Messages typically tell another object to run one of its methods to do something. For

example, an object that represents the brakes of a train might pass a message to the

object that represents the train wheels to tell it to stop spinning. By passing messages to

each other, objects can work together. Each object knows how to do something useful,

and whenever an object needs to do something that’s beyond its control, it needs to

contact another object and pass it a message to tell that other object what to do.

NOTE: Chapter 12 explains the details of creating classes in Objective-C. Right now, you just
need to get a rough understanding of how object-oriented programming works without getting

bogged down in the technical details of using a particular programming language.

Objects provide two distinct advantages over traditional programming. First, objects

help reduce errors or bugs in a program. Second, objects encourage reusing code to

make programming faster and more reliable.

CHAPTER 8: Understanding the Cocoa Framework 114

Reducing Bugs
The main idea behind objects is to isolate or encapsulate data and the subprograms that

manipulate that data. By grouping in one place all subprograms that manipulate the

same data, you can reduce errors.

Traditional programs behave like a single refrigerator in an apartment where five different

people store their food. No matter how careful each person might be, chances are good

that they’ll accidentally move or take something that belongs to someone else. If all five

people live in separate apartments with their own refrigerators (like dividing a program

into objects), none of these problems could happen.

By isolating data and the subprograms that manipulate that data, objects reduce the

chance that errors or bugs in other parts of your program will interfere with important

data used by a different part of the program.

Reusing Code
In the past, programmers wrote subprograms and stored them in separate files. If one

programmer wanted to modify a subprogram to fix a problem or add a new feature, that

programmer had a choice of either creating a duplicate copy of that subprogram and

modifying that duplicate, or modifying the original subprogram.

Modifying the original subprogram could cause problems if another part of that program

depends on that subprogram. That means any modifications could prevent another part

of the program from working.

Duplicating a subprogram and then modifying that duplicate is a safer option, but it

creates separate copies of nearly identical subprograms. If you discover a problem with

the original subprogram, you have to fix it and fix every modified copy of that

subprogram. If you made ten copies of a subprogram, you have to fix ten separate

copies of that modified subprogram and hope that your modifications don’t accidentally

wreck that subprogram and keep it from working.

Objects eliminate this problem by keeping the original subprogram untouched. Instead

of making a physical duplicate of a subprogram, you simply create an object based on a

class. Your object then has access to the code stored in that class, but you never need

to physically copy that code. The result is that your programs can be smaller and easier

to understand, and can include a wide variety of features without requiring you to write

additional code to make those features work.

Defining Classes
To create an object, you must go through two steps. First, you must create a class using

Objective-C code, which defines the properties (data) and methods (subprograms) that

manipulate the class’s properties. Second, you must declare an arbitrary name that

represents an instance of your class, which represents your object.

CHAPTER 8: Understanding the Cocoa Framework 115

To create a class, you need to write Objective-C code and store that code in two files

that work together, as shown in Figure 8–2. The first file is called a header file and ends

with the .h file extension. The second file is called an implementation file and ends with

the .m file extension.

Figure 8–2. A class consists of a header file and an implementation file.

The header (.h) file contains information that other parts of your program may need to

know about. For example, if you want other parts of your program to store data in a

property, you must specify that property name (a variable) in the header file. Storing any

properties or methods in the header file makes those properties or methods visible and

accessible to the rest of your program.

The implementation file (.m) contains two types of information. First, the implementation

file contains data that you do not want other parts of your program to access. Second,

the implementation file contains the actual Objective-C code that makes your methods

actually work.

When writing Mac programs, you’ll probably write your own classes, but you’ll also likely

use classes that Apple has already created for you, which make up the Cocoa

framework. By using the hundreds of different classes stored in the Cocoa framework,

you can add features to your program without ever looking at, or needing to understand,

the Objective-C code that actually makes those features work.

Creating an Object
Once you understand how classes work, you need to understand the details of how to

create an object using Objective-C. Creating objects is similar to declaring a variable.

When declaring variables, you have to specify an arbitrary variable name plus the data

type that the variable represents:

CHAPTER 8: Understanding the Cocoa Framework 116

int myNumber;

The first command, int, tells the computer that you’re creating a variable that can hold

only integers. The second command, myNumber, is the arbitrary variable name chosen to

store an integer.

To create an object, you follow the same convention. Instead of defining a data type,

you define a class. Then you define an arbitrary variable name to represent your object:

NSString *myName;

The NSString portion tells the computer that you’re creating an NSString object. The NS

prefix tells you that it’s an object from Apple’s Cocoa framework that has already been

written for you. (When you start defining your own classes in Objective-C code, you can

name your classes anything you want, without the NS prefix. Many Apple-created class

begins with the NS prefix.)

The second part, *myName, is the arbitrary name chosen that defines your object. Notice

that when creating an object, you must use a pointer, which is the asterisk (*) symbol in

front of the name.

Just as multiple variables can be of the same data type, you can create multiple objects

of the same class:

NSString *myName;
NSString *yourName;

Again, while you can create your own classes by writing Objective-C code, you’ll also be

using classes that Apple provides for you in its Cocoa framework. The following are two

of the most common types of classes available from the Cocoa framework:

 NSNumber: Stores any type of number (integer or floating point)

 NSString: Stores text

Storing Data in an Object
After you create an object, you can use that class’s methods to store and manipulate its

properties that contain data. The simplest way to store data in an NSString object is to

assign it a string of text:

NSString *myName;
myName = @"John Doe";

If you want, you can declare and assign a value to an NSString object like this:

NSString *myName = @"John Doe";

NOTE: When assigning a string to an NSString type of object, always remember to put the @
symbol in front of the string, such as @"This is a string." Omitting the @ symbol when

working with NSString object types is a common cause of errors.

CHAPTER 8: Understanding the Cocoa Framework 117

Storing data in an NSNumber object isn’t as straightforward as storing data in an NSString

object. Since you can store both integer and floating-point numbers in an NSNumber

object, you need to use special methods that are built into the NSNumber class. When

working with most classes, such as NSNumber, you’ll use its built-in methods for

manipulating its data.

For NSNumber, the two most common methods you’ll use are the following:

 numberWithInt: Creates an object that stores an integer value

 numberWithFloat: Creates an object that stores a floating-point

number

To store an integer in an NSNumber object, you need to define the object you want to

manipulate and the method you want to use. Always use square brackets to define the

object and the method to run:

[object method];

To store a value in an NSNumber object, you must identify the NSNumber class by name

followed by the method to run:

NSNumber *storeMe;
storeMe = [NSNumber numberWithInt:34];

The first line of code defines an object (called storeMe) based on an NSNumber class. The

second line assigns a value to the storeMe object using the numberWithInt method. In

this case, the numberWithInt method takes the number 34 and stores it in the storeMe

object.

You can also declare an object and assign it a value in a single line like this:

NSNumber *storeMe = [NSNumber numberWithInt:34];

If you replace the numberWithInt method and use another one, such as

numberWithFloat, you can store a floating-point number in the NSNumber object:

NSNumber *storeMe = [NSNumber numberWithFloat:4.18];

To store data in most objects, you often have to use a particular method. To find this

method name, you’ll need to browse through the class reference for that object in the

Developer Documentation available online at the Apple Developer site.

A Sample Program for Manipulating Objects
To see how to declare an object, store data in that object, and print that data, follow

these steps:

1. Open the VariableTest project from the previous chapter.

2. Click the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

CHAPTER 8: Understanding the Cocoa Framework 118

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSNumber *myNumber;
 myNumber = [NSNumber numberWithFloat:3.47];
 NSLog (@"The value in NSNumber = %@", myNumber);
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

7. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-09-01 21:08:33.614 VariableTest[21366:a0f] The value in NSNumber = 3.47

The main part of this sample program is that you used the NSNumber class to declare an

object named myNumber. Then you stored data into that myNumber object using the

numberWithFloat method. Next you used the NSLog command to print the contents of

that myNumber object.

Looking Up Method and Property Names for NS
Classes
In the example of storing data in an NSNumber object, you may have wondered how

anyone could possibly know that you can use the two methods numberWithInt and

numberWithFloat for storing data in an NSNumber object, or the stringValue property for

retrieving data as a string. The answer is that you have to look up method and property

names for classes in the Developer Documentation.

NOTE: Properties hold data, and methods are subprograms that do something useful such as

manipulate the properties stored in that object.

Any time you create an object based on one of Apple’s existing classes (typically

identified by the NS prefix, such as NSString), you can find all the method and property

names for that class by browsing through the Developer Documentation within Xcode:

1. From within Xcode, choose Help ➤ Developer Documentation. The window

shown in Figure 8–3 appears.

2. Click the Search field in the upper-right corner of the window.

CHAPTER 8: Understanding the Cocoa Framework 119

Figure 8–3. The Search field in the Organizer window

3. Type a class name such as NSNumber. Then press Return. The right pane

displays the NSNumber class reference, as shown in Figure 8–4.

CHAPTER 8: Understanding the Cocoa Framework 120

Figure 8–4. The class reference lists all the available methods.

4. Scroll down the right pane until you see the list of methods or properties available

for your chosen class, as shown in Figure 8–5.

Figure 8–5. Each class reference lists all its available methods.

CHAPTER 8: Understanding the Cocoa Framework 121

5. Click a method or property name that you want to read about. Detailed

information about your chosen method appears as shown in Figure 8–6.

Figure 8–6. Clicking a method name displays detailed information about that method.

At any time, you can click the Back (or Forward) button to view a previously viewed

screen. When you’re done, click the close button in the upper-left corner of the

Organizer window to make it go away.

Summary
Objects make Mac programming easier in several ways. The most obvious way is that

you can use objects written by Apple in your own programs.. These prewritten classes

form Apple’s Cocoa framework, which provides tested and reliable code for performing

common types of tasks. Using the Cocoa framework saves you time so that you can

focus on writing the code that’s unique to your particular program.

To create an object, you have to start with a class, which consists of two separate files

that work together, a header (.h) file and an implementation (.m) file. Creating an object

is much like declaring a variable. First you need to define a class. Then you can use a

single class file to create multiple objects.

CHAPTER 8: Understanding the Cocoa Framework 122

When you create your own class files, you’ll need to write Objective-C code that defines

the properties and methods. However, when you use classes stored in Apple’s Cocoa

framework, you don’t have to write any code at all.

To determine what properties and methods are available in an object created from the

Cocoa framework, you’ll need to search through the Developer Documentation, which

you can access through the Xcode Help menu.

Object-oriented programming is nothing more than an arbitrary way to divide a large

program into smaller, more manageable parts. Objects help reduce the number of errors

or bugs by eliminating the possibility that data can be modified by mistake from another

part of your program.

Objects also act as building blocks that you can use to create a program without having

to know how they work. All you need to know is how to use them. When creating your

own Mac programs, the objects based on Apple’s Cocoa framework let you create the

user interface and code for performing common tasks without having to write any code

yourself. All you need to do is write code for making your program actually do something

useful.

123

123

 Chapter

Manipulating Strings
In previous chapters, you learned how to store integer and floating-point numbers in a
variable. However, one of the more common types of data to store is text, otherwise
known as a string.

There are two parts to a string in Objective-C. First, you must identify a string by using
the @ symbol, which identifies the string as a special Objective-C string. Second, you
must enclose the string inside double quotation marks, such as @"This is a string" or
@"555-1212 is also a string." Strings can contain any characters, including numbers,
symbols, and letters.

To store and manipulate strings when creating Mac programs, you use a string class
called NSString. One advantage of creating an object from an NSString class is that you
can use all of the built-in methods for manipulating strings. In this chapter, you’ll learn
how to create string variables, how to manipulate strings using methods already created
for you by the string class, and how to use two different kinds of string classes called
NSString and NSMutableString. If you just need to store a string that will never change
while your program runs, you can use the NSString class. If you need to modify a string
while your program runs, you can use the NSMutableString class.

Declaring a String Variable
When you create a string variable (either an NSString or NSMutableString), you’re
working with objects, so you need to create a pointer such as the following:

NSString *myName;
NSMutableString *myOtherName;

To assign a string to an NSString variable, you simply use the equal sign like this:

NSString *myName;
myName = @"John Doe";

You can also declare a string and assign a value to it on one line:

NSString *myName = @"John Doe";

9

CHAPTER 9: Manipulating Strings 124

Once you assign a string to an NSString variable, you can never modify that string
object again while your program runs. If you want to modify a string object while your
program runs, you need to create an NSMutableString variable.

However, assigning a string to an NSMutableString variable is much different. Instead of
directly assigning a string, you have to use the stringWithString method:

NSMutableString *myString;
myString = [NSMutableString stringWithString: @"This is a string"];

If you originally stored a string in an NSString object, you can’t modify that string.
However, you can modify a copy of that string by storing it in an NSMutableString
object:

NSString *myName = @"John Doe";
NSMutableString *myString;
myString = [NSMutableString stringWithString: myName];

This code simply copies the string stored in the myName variable (NSString type) and
stores it in myString (NSMutableString type). Once it is stored in myString, you can then
manipulate the string by adding or deleting characters.

Getting the Length of a String
The length of a string includes the number of characters in the string plus any spaces in
between. So the string @"Hello, world!" consists of 10 characters, 2 punctuation
marks, and 1 space, for a total length of 13. To get the length of a string, you need to
use the length method:

NSString *myName = @"John Doe";
int counter;
counter = [myName length];

To see how the length method works, follow these steps:

1. Open the VariableTest project from the previous chapter.

2. Click the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSString *myString = @"Hello, world!";
 int counter;
 counter = [myString length];
 NSLog (@"String length = %i", counter);
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

CHAPTER 9: Manipulating Strings 125

7. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-09-04 17:15:49.929 VariableTest[29949:a0f] String length = 13

Comparing Two Strings
To check if two string pointers contain identical text, you have to use the
isEqualToString method and list the two strings to compare:

[string1 isEqualToString: string2];

So if you wanted to compare the memory locations of two string pointers to determine
whether they contain identical strings, you could use this code:

NSString *myName = @"John Doe";
NSString *hisName = @"John Doe";
if ([myName isEqualToString: hisName])
 {
 NSLog (@"The two strings are equal.");
 }

Checking for Prefixes and Suffixes
If you just want to check if a string begins or ends with a certain string such as "The" or
a period, you can look for a specific prefix or suffix. To check for certain characters at
the beginning of another string, use the hasPrefix method:

[string1 hasPrefix: string2];

Likewise, if you want to check if a string ends with certain characters, you can use the
hasSuffix method:

[string1 hasSuffix: string2];

In both cases, the hasPrefix or hasSuffix method returns a YES or NO Boolean value. To
see how these two methods work, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSString *myName = @"John Doe";
 NSString *hisName = @"John Doe";
 if ([myName isEqualToString: hisName])
 {
 NSLog (@"The two strings are equal using isEqualToString.");
 }
 BOOL flag;
 flag = [myName hasPrefix: @"John"];

CHAPTER 9: Manipulating Strings 126

 if (flag)
 {
 NSLog (@"The hasPrefix method returned YES.");
 }
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

7. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-09-04 19:43:03.883 VariableTest[30388:a0f] The two strings are equal using
isEqualToString.
2010-09-04 19:43:03.886 VariableTest[30388:a0f] The hasPrefix method returned YES.

Converting to Uppercase and Lowercase
You can modify the case of a string in three ways:

 capitalizedString: Capitalizes the first letter of each word

 lowercaseString: Converts every character to lowercase

 uppercaseString: Converts every character to uppercase

Uppercase and lowercase only pertain to letters. Any other symbols such as numbers or
punctuation marks won’t be affected. To use these methods, you must assign the result
to a string such as follows:

NSString *testString = @"Greetings from another planet.";
NSString *targetString;
targetString = [testString lowercaseString];

This would convert the testString text to lowercase and store the result in the
targetString variable. To see how all these methods work for changing the case of a
string, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSString *testString = @"Greetings from another planet!";
 NSString *targetString;
 targetString = [testString uppercaseString];
 NSLog (@"All uppercase = %@", targetString);
 NSLog (@"**********");
 targetString = [testString lowercaseString];

CHAPTER 9: Manipulating Strings 127

 NSLog (@"All lowercase = %@", targetString);
 NSLog (@"**********");
 targetString = [testString capitalizedString];
 NSLog (@"All capitalized strings = %@", targetString);
 NSLog (@"**********");
 NSLog (@"Original string = %@", testString);
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

7. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-09-04 20:28:07.423 VariableTest[30522:a0f] All uppercase = GREETINGS FROM ANOTHER
PLANET!
2010-09-04 20:28:07.426 VariableTest[30522:a0f] **********
2010-09-04 20:28:07.429 VariableTest[30522:a0f] All lowercase = greetings from another
planet!
2010-09-04 20:28:07.445 VariableTest[30522:a0f] **********
2010-09-04 20:28:07.446 VariableTest[30522:a0f] All capitalized strings = Greetings From
Another Planet!
2010-09-04 20:28:07.447 VariableTest[30522:a0f] **********
2010-09-04 20:28:07.454 VariableTest[30522:a0f] Original string = Greetings from another
planet!

Notice that the original string never changes. These methods simply create a new result
and store this new result in another string variable.

Converting Strings to Numbers
A string can hold a number, such as @"39.58" or @"43". If a string contains only a
number (no letters or symbols), you can convert that string to a number data type such
as an integer or a floating-point number using one of the following methods:

 integerValue: Converts a string to an integer

 floatValue: Converts a string to a floating-point value

 doubleValue: Converts a string to a double value, which is a floating-
point value that can retain more decimal places

To use one of these methods on a string that contains only a number (they won’t work
on strings that contain a mix of numbers and characters), use one of the three methods
like this:

[stringName floatValue];

The preceding code would convert a string into an floating point value, which you could
store into an floating point variable like this:

CHAPTER 9: Manipulating Strings 128

 NSString *floatString = @"52.016";
 float myFloat;
 myFloat = [floatString floatValue];

You can also take a string, holding a floating-point value, and convert it into an integer
by using the integerValue method. This cuts off the decimal portion of the number and
retains only the integer value, such as turning @"39.78" into just 39.

You can also convert an integer string into a floating-point number using the floatValue
method. This simply adds on zeros after the decimal point, such as turning @"58" into
58.000000.

To see these string-to-number conversion methods work, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSString *integerString = @"47";
 NSString *floatString = @"52.7016";
 int myInteger;
 float myFloat;
 myInteger = [integerString intValue];
 myFloat = [floatString floatValue];
 NSLog (@"Integer value = %i", myInteger);
 NSLog (@"Float value = %f", myFloat);
 NSLog (@"**********");
 myInteger = [floatString integerValue];
 myFloat = [integerString floatValue];
 NSLog (@"Integer value = %i", myInteger);
 NSLog (@"Float value = %f", myFloat);
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

7. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-09-05 09:22:07.334 VariableTest[31785:a0f] Integer value = 47
2010-09-05 09:22:07.343 VariableTest[31785:a0f] Float value = 52.701599
2010-09-05 09:22:07.345 VariableTest[31785:a0f] **********
2010-09-05 09:22:07.347 VariableTest[31785:a0f] Integer value = 52
2010-09-05 09:22:07.351 VariableTest[31785:a0f] Float value = 47.000000

CHAPTER 9: Manipulating Strings 129

Searching for a Substring
If you have a long string, you may need to know whether or not a certain word appears
within that longer string. To determine that, you can search a string for a substring using
the rangeOfString method.

To search for a substring within another string, you must declare a variable as an
NSRange type:

NSRange myRange;

Then you must use the rangeOfString method to specify the substring to search for
within the longer string:

[bigString rangeOfString: substring];

You next must assign the preceding code to the NSRange variable like this:

NSRange myRange;
myRange = [bigString rangeOfString: substring];

NOTE: NSRange is a structure, which is a special data structure that lets you store multiple
variables (called fields) inside a single variable name. The complete NSRange structure looks like
this:

typedef struct _NSRange {

 NSUInteger location;
 NSUInteger length;

} NSRange;

The location Field
The NSRange class includes two fields that you can use to store information about a
string: location and length. The location field identifies where the substring appeared
in the larger string. If the substring does not appear at all, then the location field
contains a value of NSNotFound. If the substring does appear within the larger string, then
the location field contains an integer value.

The length Field
If the location field contains an integer value, then the length field contains the length
of the substring that was found.

To see how to search for a substring within a larger string, follow these steps:

CHAPTER 9: Manipulating Strings 130

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSRange myRange;
 NSString *bigString = @"Learning to program can be fun!";
 myRange = [bigString rangeOfString: @"can be"];
 if (myRange.location == NSNotFound)
 {
 NSLog (@"Substring is not in %@", bigString);
 }
 else
 {
 NSLog (@"Substring found at location = %i", myRange.location);
 NSLog (@"Substring length = %i", myRange.length);
 }
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

7. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-09-05 11:39:03.433 VariableTest[32079:a0f] Substring found at location = 20
2010-09-05 11:39:03.436 VariableTest[32079:a0f] Substring length = 6

Searching and Replacing
In addition to searching for a substring within a larger string, you can also search for and
replace parts of a string, using either of two techniques. First, you can replace part of a
long string starting at a specific location. Second, you can search for a specific
substring and replace it with a new substring.

To search for and replace part of a string with a new substring, use the NSMutableString
class, which allows the string to change while your program runs.

Replacing Part of a String at a Specific Location
To replace a substring with another substring, you must specify the location and the
length of the substring. The location, or index, defines where in the long string you want
to start replacing characters.

CHAPTER 9: Manipulating Strings 131

When working with strings, the first character in a string is at index position 0, the
second character is at index position 1, and so on, as shown in Figure 9-1.

Figure 9–1. A string is zero-based, so the first character is index 0, the second is index 1, and so on.

To determine how many characters to replace, you have to specify a numeric value for
the substring length. For example, suppose you had this string:

@"That is a large string."

If you wanted to replace the substring "is" in this string, you would have to specify an
index of 5 and a length of 2.

Regardless of the original substring length, you can replace it with a new substring of a
different length and the computer will adjust the longer string accordingly. So if you
wanted to replace the word "is" with the phrase "was not", the longer string would now
read "That was not a large string."

To replace part of a longer string with a substring, you need to use the following:

 replaceCharactersInRange: Swaps out a specific location in a string
with a substring

 NSMakeRange(index, length): Defines the index in the string and the
number of characters to replace

 withString: Defines the new substring to insert into the longer string

Putting all of these together, you could use the following code:

[largeString replaceCharactersInRange: NSMakeRange(5,2) withString: @"was not"];

To see how to replace a substring in a specific location of a longer string, follow these
steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSMutableString *largeString;
 largeString = [NSMutableString stringWithString: @"That is a string"];
 NSLog (@"Original string = %@", largeString);
 [largeString replaceCharactersInRange: NSMakeRange(5,2) withString: @"was not"];
 NSLog (@"New string = %@", largeString);
}

CHAPTER 9: Manipulating Strings 132

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

7. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-09-05 17:29:04.890 VariableTest[32706:a0f] Original string = That is a string
2010-09-05 17:29:04.893 VariableTest[32706:a0f] New string = That was not a string

Searching for and Replacing Part of a String
Suppose you want to search for and replace a substring within another string, but you
do not know the exact location of the substring that you want to replace. As an
alternative, you can search for a specific substring to replace regardless of its location in
the longer string.

To search for and replace part of a longer string with a substring, you need to use the
following:

 replaceOccurrencesOfString: Defines a specific string to replace

 withString: Defines the string to use and insert in

a larger string

 options: Defines different ways to search such as
NSCaseInsensitiveSearch (ignores upper and lower case in a string),
NSLiteralSearch (every character must exactly match),
NSBackwardsSearch (starts searching from the end),
NSAnchoredSearch (only searches from the beginning of the string, or
the end if used with NSBackwardsSearch)

 range: Defines the part of a larger string to search

Putting all of these together, you could use the following code:

[newString replaceOccurrencesOfString:@"another"
withString:@"a modified"
options:NSCaseInsensitiveSearch

 range:replaceRange];

This code would look in the newString variable for the substring "another" and replace it
with the string "a modified".

To see how to search for and replace a substring in a longer string, follow these steps:

CHAPTER 9: Manipulating Strings 133

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSMutableString *newString;
 newString = [NSMutableString stringWithString: @"This is another string."];
 NSLog (@"Original string = %@", newString);
 NSRange replaceRange = NSMakeRange(0, [newString length]);
 [newString replaceOccurrencesOfString:@"another"
 withString:@"a modified"
 options:NSCaseInsensitiveSearch
 range:replaceRange];
 NSLog (@"New string = %@", newString);
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

7. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-09-05 18:27:54.796 VariableTest[32799:a0f] Original string = This is another
string.
2010-09-05 18:27:54.799 VariableTest[32799:a0f] New string = This is a modified string.

Deleting Part of a String
Sometimes you may want to delete part of a string. To do this, you must delete a
substring from an NSMutableString variable and use the following two methods:

 deleteCharactersInRange: Deletes the substring defined by the
rangeOfString method

 rangeOfString: Defines the substring to delete

To use these methods on an NSMutableString, you could use code like this:

[largeString deleteCharactersInRange: [largeString rangeOfString: @"delete me"]];

This code would delete the string "delete me" from the string stored in the largeString
variable. To see how to delete a substring from a longer string, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

CHAPTER 9: Manipulating Strings 134

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSMutableString *largeString;
 largeString = [NSMutableString stringWithString: @"That is a string"];
 NSLog (@"Original string = %@", largeString);
 [largeString deleteCharactersInRange: [largeString rangeOfString: @"is a "]];
 NSLog (@"New string = %@", largeString);
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

7. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-09-05 18:56:28.351 VariableTest[32877:a0f] Original string = That is a string
2010-09-05 18:56:28.354 VariableTest[32877:a0f] New string = That string

When deleting a substring from another string, you may also need to delete the space
ahead or after the substring you’re deleting. In the preceding example, notice that you
must delete the string "is a " with a blank space after the letter a. If you simply deleted
the string "is a", then there would be two spaces left to separate the remaining text,
such as "That string", which may not be what you want.

Extracting a Substring
Deleting a substring just chops that substring out of a longer string and throws that
substring away. In case you need to use that substring, you can yank it out and save it
in a variable. There are two ways to extract a substring out of a longer string:

 Specify the location in the longer string and the number of characters
to extract

 Specify the index in the longer string and yank out all characters
starting from the defined location to the end of the string

The first method lets you yank out substrings from the middle of a longer string, such as
yanking out the word "you" from the longer string "Hello all you people."

The second method can extract a substring only from a specific index to the end of the
string, making it impossible to extract just a middle portion of a string.

Extracting a Substring with a Location and Length
To extract a substring from a longer string, you need to use the following:

 substringWithRange: Extracts a substring defined by NSMakeRange

CHAPTER 9: Manipulating Strings 135

 NSMakeRange(index, length): Defines the index and number of
characters to extract

When you extract a substring, you’re copying part of the original string, so you can
extract a substring from either an NSString or NSMutableString like this:

[largeString substringWithRange: NSMakeRange(X,Y)];

The preceding code returns a string that you can assign to an NSString variable like this:

NSString *myString;
myString = [largeString substringWithRange: NSMakeRange(X,Y)];

To see how to extract a substring and how it can affect your original string, follow these
steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSMutableString *largeString;
 largeString = [NSMutableString stringWithString: @"That is a string"];
 NSLog (@"Original string = %@", largeString);
 NSString *newString;
 newString = [largeString substringWithRange: NSMakeRange(5, 4)];
 NSLog (@"New string = %@", newString);
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

7. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-09-05 20:09:00.058 VariableTest[33337:a0f] Original string = That is a string
2010-09-05 20:09:00.063 VariableTest[33337:a0f] New string = is a

Extracting a Substring to the End of a String
A much simpler, but limited, way to extract a substring out of a longer string is to specify
a location in the longer string using the substringFromIndex method, which looks like
this:

[largeString substringFromIndex: X];

The preceding code returns a string where the value of X is the index of the first
character that you want in your substring. Whatever location you choose (any value,

CHAPTER 9: Manipulating Strings 136

starting with 0), the substringFromIndex method yanks out that substring from that
location to the end of the string.

To see how the substringFromIndex method works, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSMutableString *largeString;
 largeString = [NSMutableString stringWithString: @"That is a string"];
 NSLog (@"Original string = %@", largeString);
 NSString *newString;
 newString = [largeString substringFromIndex: 5];
 NSLog (@"New string = %@", newString);
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

7. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-09-05 20:20:13.495 VariableTest[33385:a0f] Original string = That is a string
2010-09-05 20:20:13.500 VariableTest[33385:a0f] New string = is a string

Appending a Substring
If you have defined a string as an NSMutableString, you can append text to the end of it
by using the appendString method like this:

[largeString appendString: @" Newly added string"];

Whatever text the largeString variable contains, it now includes the string "Newly added
string" at the end. When appending text to a string, you may need to put a space
ahead of the appended text so that the newly added string doesn’t get smashed
together with the other string.

To see how to use the appendString method, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

CHAPTER 9: Manipulating Strings 137

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSMutableString *largeString;
 largeString = [NSMutableString stringWithString: @"That is a string"];
 NSLog (@"Original string = %@", largeString);
 [largeString appendString: @" and this is a string too."];
 NSLog (@"New string = %@", largeString);
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

7. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-09-05 20:30:33.054 VariableTest[33424:a0f] Original string = That is a string
2010-09-05 20:30:33.059 VariableTest[33424:a0f] New string = That is a string and this
is a string too.

Inserting a String
The appendString method adds a new string to the end of an existing one. If you want to
add text in the middle or at the beginning of a string, you have to use the insertString
method and specify the index with the atIndex method like this:

[largeString insertString: @" Newly added string" atIndex: X];

The insertString method defines the string to add, and the atIndex method defines the
location in which to insert the string inside another string. When inserting a string inside
an existing one, you may need to add an extra space before or after the inserted string
so that the text does not appear smashed together.

To see how the insertString method works, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSMutableString *largeString;
 largeString = [NSMutableString stringWithString: @"That is a string"];
 NSLog (@"Original string = %@", largeString);
 [largeString insertString: @"was and still " atIndex: 5];
 NSLog (@"New string = %@", largeString);
}

4. Choose File ➤ Save or press S to save your changes.

CHAPTER 9: Manipulating Strings 138

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

7. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-09-05 20:37:54.657 VariableTest[33470:a0f] Original string = That is a string
2010-09-05 20:37:54.661 VariableTest[33470:a0f] New string = That was and still is a
string

Summary
After numbers, strings are the second most common type of data for programs to store
and manipulate. If you just need to store a string and never modify it, you can declare an
NSString variable. If you need to modify a string while your program runs, then you must
declare an NSMutableString variable.

The way in which you assign a value to a string variable differs depending on whether
you’re using an NSString or NSMutableString. With an NSString, you can simply assign a
value with the equal sign like this:

NSString *myString;
myString = @"My new string contents";

To assign a string to an NSMutableString variable, you must use the stringWithString
method like this:

NSMutableString *myString;
myString = [NSMutableString stringWithString: @"My new string contents"];

Strings are any character inside double quotation marks and preceded by a @ symbol. If
you store numbers as a string, you can convert those strings into actual integer or
floating-point values.

When modifying strings, keep in mind that you may need empty spaces to prevent text
from smashing together. Also when manipulating strings, you may need to specify an
index position of a string. The first character of a string is considered to be at index 0,
the second is at index 1, and so on.

139

139

 Chapter

Arrays
When you store data, such as numbers or strings, in a variable, you can store only one
chunk of data at a time. If you need to store five different numbers, you have to create
five different variables. If you need to store 100 different numbers, you have to create
100 different variables. Clearly, having to create a new variable to store each new chunk
of data is clumsy and inefficient, so programming languages offer a solution called an
array.

An array essentially acts like a single variable that can store multiple chunks of data.
Rather than acting like an individual box that can hold only one chunk of data, such as a
single variable, an array acts like a big box divided into sections, where each section can
store one chunk of data, as shown in Figure 10–1. Instead of being forced to create and
name a new variable for each chunk of data you want to store, you just have to create
and name a single array to store multiple chunks of data.

Figure 10–1. An array acts like a single variable that can hold multiple data.

NOTE: Anything used to store data is called a data structure. An array is the most common type
of data structure, but there are other types of data structures for storing data as well. Each type

of data structure has its own advantages and disadvantages.

If you’re familiar with another programming language, such as C++, you know that most
programming languages provide basic commands for creating and manipulating arrays.
However, these basic commands often require you to write a lot of code just to do
something as simple as adding or removing data from an array.

10

CHAPTER 10: Arrays 140

Arrays in other programming languages also have the limitation of allowing you to store
only one type of data in an array. If you wanted to store integers, you would have to
create a separate integer array. If you wanted to store floating-point numbers, or strings,
you would have to create another floating-point or string array.

To avoid these limitations, Apple has created a special array class, called NSArray. In
addition to providing much simpler commands for manipulating arrays, the NSArray
class can store different types of data in the same array.

In Mac programming, there are two types of arrays you can create: NSArray and
NSMutableArray. The NSArray is known as a static array because you can store data in
the array once, but never add, change, or remove data later. The NSMutableArray is
known as a dynamic array because you can always add data to, change data within, or
delete data from the array while your program is running.

In this chapter, you’ll learn how to create arrays, how to store data in an array, how to
retrieve data in an array, and how to modify an array by adding or deleting data. Arrays
are one of the more powerful tools you can use to keep your program’s data organized.

Creating an Array
When you create an array (either an NSArray or NSMutableArray), you’re working with
objects, so you need to create a pointer such as the following:

NSArray *myArray;
NSMutableArray *myOtherArray;

This simply creates a pointer to an array object. To fill an array with data, you have two
options. First, you can declare an array on one line and then fill that array on a second
line like this:

NSArray *myArray;
myArray = [NSArray arrayWithObjects: object1, object2, object3, nil];

A second way to fill an array with data is to declare and initialize the array on a single
line:

NSArray *myArray = [NSArray arrayWithObjects: object1, object2, object3, nil];

NOTE: When storing items in an array, make sure you always define the end of the array data
with nil. If you omit nil, then the computer won’t know when your array ends, which will likely

cause your program to run incorrectly, if at all.

Although this example adds only three objects, you can add as many objects to an array
as you want. Before you can add an object to an array, you must declare that object
ahead of the array:

NSString *object1 = @"Hello";
NSString *object2 = @"world!";
NSNumber *object3 = [NSNumber numberWithInt:45];
NSArray *myArray = [NSArray arrayWithObjects: object1, object2, object3, nil];

CHAPTER 10: Arrays 141

Before continuing, it’s important to know exactly what’s happening in this code. First,
whenever you see an asterisk used in front of a variable name, your code is probably
defining a pointer, and the presence of pointers almost always means you’re working
with an object. The first three lines of this example create three objects named object1,
object2, and object3. The first two objects are string objects (NSString) and the third
object is a number object (NSNumber).

NOTE: The value object (NSNumber) is used to hold a value such as an integer (int) or floating-
point (float) number. In this case, the NSNumber object holds an NSNumber object that

contains the number 45.

Second, the square brackets are almost always used to work with objects as well. The
equal sign (=) assigns a value to a variable. In this case, the value inside the square
brackets gets assigned to the *myArray pointer.

To see how an array works, follow these steps:

1. Open the VariableTest project from the previous chapter.

2. Click the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSString *object1 = @"Hello";
 NSString *object2 = @"world!";
 NSNumber *object3 = [NSNumber numberWithInt:45];
 NSArray *myArray;
 myArray= [NSArray arrayWithObjects: object1, object2, object3, nil];
 NSLog(@"Array contents = %@",[myArray componentsJoinedByString:@", "]);
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

7. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:
2010–08-31 22:24:10.948 VariableTest[18411:a0f] Array contents = Hello, world!, 45

Finding the Right Method to Use
When square brackets work with objects, the object name always appears first. In the
previous example, the object is NSArray. The next question is, where did the
arrayWithObjects method come from?

CHAPTER 10: Arrays 142

To find the answer, you need to remember that Apple has defined plenty of useful
classes and stored them in its Cocoa framework for all programmers to use. Any time
you see a class that begins with the prefix NS (which stands for NeXTSTEP), that’s a clue
that you’re working with one of Apple’s predefined classes.

Since classes almost always include properties (data) and methods (subprograms that
manipulate the class’s data), you can browse through Apple’s Developer Documentation
to find a list of all the methods and properties available for any class provided by Apple.

To find this documentation, you need to view the Developer Documentation through the
Xcode Help menu. Choose Help ➤ Developer Documentation and search for NSArray.
This will display a list of different help text about NSArray. Look for and click
“NSArrayClass Reference” and you’ll see the NSArray class reference, as shown in
Figure 10–2.

Figure 10–2. The NSArray class reference is available in the Developer Documentation.

Scroll through this NSArray class reference and look for a method that lets you store
data in the NSArray. You may see several methods, but eventually you’ll find the
arrayWithObjects method listed, along with an explanation of how it works, as shown in
Figure 10–3.

CHAPTER 10: Arrays 143

Figure 10–3. The arrayWithObjects method explained in the Developer Documentation

The general rule when working with classes that begin with an NS prefix is to look for the
properties and methods you can use to manipulate those objects. Chances are good
that Apple already provides the code you need to use, which means that instead of
having to write your own code for adding data to an array (which you have to do in other
programming languages), Apple lets you choose the method you need, thus reducing
the amount of code you need to write and test.

Storing Objects in an Array
Now that you understand where the arrayWithObjects method came from, you can use
it to store objects in the array. You must separate each object with a comma, and when
you’re done adding objects to the array, you must use the nil value to identify the end
of the array. If you don’t use nil as the last object stored in your array, you could
confuse the computer and cause your program to crash.

Just the simple act of adding data to an array showed you quite a bit about the process
of writing a Mac program. The biggest trick is simply knowing which methods, in

9

CHAPTER 10: Arrays 144

different classes, you can use and how they work, which you can learn by browsing
through the Developer Documentation.

Some other ways to learn about different methods available for specific classes include
the following:

 Have someone show or tell you

 Find a book or web page that explains that particular method

 Study Objective-C programs written by someone else

Trying to find the right method to use can be like trying to look up a word in a dictionary
when you don’t know how to spell that word. The first step should be to look up the
class reference for the particular object you want to manipulate, such as NSArray.

Suppose you look up a class reference and can’t find the method you want. That
doesn’t necessarily mean that the method you want doesn’t exist. Check the class
reference for the object to see a list of other classes that the class inherits from. The
NSArray class reference (see Figure 10–2) shows that the NSArray class inherits from the
NSObject class. So if the method you want isn’t available in the NSArray class reference,
it might be described in the NSObject class reference.

Remember, every class contains its own methods and properties. When one class
inherits from another class, that second class includes all the methods and properties of
both classes. Since the NSArray class inherits from the NSObject class, the NSArray class
inherits all the methods and properties from the NSObject class.

If you look up the class reference of one class, such as NSArray, in the Developer
Documentation, you can view all the methods and properties unique to that particular
class. If you then look up the class that the NSArray class inherits from (NSObject), you
can see all the methods and properties specific to the NSObject class. However, since
NSArray inherits every property and method from NSObject, NSArray winds up containing
every property and method available in both NSObject and NSArray, as shown in Figure
10–4.

Figure 10–4. Objects inherit methods and properties from other classes.

CHAPTER 10: Arrays 145

Additional Methods for Filling an Array
When creating and filling an array with data, the most common method you’ll use to fill
the array with objects is the arrayWithObjects method. Of course, there are several
other methods for filling an array, such as the following:

 arrayWithArray: Fills an array with the contents of an existing array

 arrayWithContentsOfFile: Fills an array with data stored in a file

 arrayWithContentsOfURL: Fills an array with data retrieved from a URL
(web site)

As you can see, every object provides plenty of methods that Apple has already created
and tested, so all you have to do is figure out how they work and when to use them in
your own program. Using such prewritten and pretested methods helps you build more
complicated programs faster and is more reliable than writing and testing your own
code.

Counting the Items Stored in an Array
After you have stored data in an array, you can always count the number of items stored
in that array by using the count command:

[arrayName count];

The arrayName simply represents the name of your array, and the count command
returns the number of items in that array, so the entire line of code evaluates to a single
number. If arrayName held six items, the preceding code would return the number 6.

To see how to count items in an array, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSString *object1 = @"Hello";
 NSString *object2 = @"world!";
 NSNumber *object3 = [NSNumber numberWithInt:45];
 NSArray *myArray;
 myArray= [NSArray arrayWithObjects: object1, object2, object3, nil];
 NSLog(@"Array contents = %@",[myArray componentsJoinedByString:@", "]);
 NSLog (@"Total number of items in array = %i", [myArray count]);
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

CHAPTER 10: Arrays 146

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

7. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:
2010–09-02 11:18:09.034 VariableTest[22851:a0f] Array contents = Hello, world!, 45
2010–09-02 11:18:09.038 VariableTest[22851:a0f] Total number of items in array = 3

Accessing an Item in an Array
When you store items in an array, the first item gets stored at one end of the array, the
second item gets stored next to the first item, the third item gets stored next to the
second item, and so on.

To keep track of all the items stored in an array, the array uses a number called an array
index. The first item in an array is stored at index 0, the second item in an array is stored
at index 1, and so on, as shown in Figure 10–5.

48 24 62 70

Figure 10–5. The array index identifies an item’s position in an array.

NOTE: In Objective-C, the first item in an array is at index 0. Such arrays are known as zero-
based arrays. In other programming languages, the first item in an array may start at index 1.
Such arrays are known as one-based arrays. Most programming languages based on C, such as

Objective-C, use zero-based arrays.

To retrieve an item from an array, you need to identify that item’s index position in the
array. So if you wanted to retrieve the first item in the array, you would retrieve the item
stored at index position 0, if you wanted to retrieve the second item in the array, you
would retrieve the item stored at index position 1, and so on.

To retrieve a specific item from an array, you have to identify the array, use the
objectAtIndex method, and specify the index position:

[arrayName objectAtIndex: index];

The preceding code would return whatever object was stored in the array at the
designated index position. So if you created an array like this,

NSArray *myArray = [NSArray arrayWithObjects: @"Hello", @"world", "@Good-bye", nil];

you could use the following code to retrieve the second item (index position 1) in the
array, which would be "world":

[myArray objectAtIndex:1];

To see how to retrieve items from an array, follow these steps:

CHAPTER 10: Arrays 147

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSString *object1 = @"Hello";
 NSString *object2 = @"world!";
 NSNumber *object3 = [NSNumber numberWithInt:45];
 NSArray *myArray;
 myArray= [NSArray arrayWithObjects: object1, object2, object3, nil];
 NSLog(@"Array contents = %@",[myArray componentsJoinedByString:@", "]);
 NSLog (@"Index position 1 = %@", [myArray objectAtIndex:1]);
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button or choose Build Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

7. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:
2010–09-03 14:53:37.017 VariableTest[26555:a0f] Array contents = Hello, world!, 45
2010–09-03 14:53:37.021 VariableTest[26555:a0f] Index position 1 = world!

Accessing All Items in an Array
Accessing an individual item in an array is fine when you only want that one item.
However, if you want to retrieve all the items in an array, and all items stored in the array
are of the same data type, you can use something called fast enumeration.

Fast enumeration lets you access every item in an array by using a modified for loop
that looks like this:

for (objectType *variable in arrayName)

The objectType represents the type of objects stored in an array, such as NSString or
NSNumber. The *variable is any arbitrarily named variable you want to use. The
arrayName is the actual array. Suppose you had an array like this:

NSString *object1 = @"Hello";
NSString *object2 = @"world!";
NSString *object3 = @"Good-bye";
NSArray *myArray = [NSArray arrayWithObjects: object1, object2, object3, nil];

To retrieve every item out of that array using fast enumeration, you could use a for loop
like this:

for (NSString *randomVariable in myArray)
 {

CHAPTER 10: Arrays 148

 NSLog (@"Array element = %@", randomVariable);
 }

To see how fast enumeration works, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click on the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSString *object1 = @"Hello";
 NSString *object2 = @"world!";
 NSString *object3 = @"Good-bye";
 NSArray *myArray;
 myArray= [NSArray arrayWithObjects: object1, object2, object3, nil];
 for (NSString *randomVariable in myArray)
 {
 NSLog (@"Array element = %@", randomVariable);
 }
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

7. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:
2010–09-03 15:25:59.460 VariableTest[26668:a0f] Array element = Hello
2010–09-03 15:25:59.461 VariableTest[26668:a0f] Array element = world!
2010–09-03 15:25:59.463 VariableTest[26668:a0f] Array element = Good-bye

If you have stored different types of data in an array, then you can access each item in
your array using a for loop that starts at 0 and runs for each item stored in the array
using the count method:

int i;
for (i = 0; i < [arrayName count]; i++)
{
 NSLog (@"Element %i = %@", i, [arrayName objectAtIndex: i]);
}

This for loop runs from 0 to the total number of items stored in the array. If you had
three items stored in the array, the for loop would run five times (from 0 to 2).

To see how to retrieve data from an array using an ordinary for loop, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click on the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

CHAPTER 10: Arrays 149

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSString *object1 = @"Hello";
 NSString *object2 = @"world!";
 NSNumber *object3 = [NSNumber numberWithInt:45];
 NSArray *myArray;
 myArray= [NSArray arrayWithObjects: object1, object2, object3, nil];
 int i;
 for (i = 0; i < [myArray count]; i++)
 {
 NSLog (@"Element %i = %@", i, [myArray objectAtIndex: i]);
 }
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

7. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:
2010–09-03 21:13:43.781 VariableTest[27527:a0f] Element 0 = Hello
2010–09-03 21:13:43.784 VariableTest[27527:a0f] Element 1 = world!
2010–09-03 21:13:43.791 VariableTest[27527:a0f] Element 2 = 45

Adding Items to an Array
When you declare an array, you have to declare it as either an NSArray or
NSMutableArray. If you declare an array as an NSArray, you can store data in it once, but
never again. If you want your program to be able to store and change data in an array
while your program runs, you need to declare your array as an NSMutableArray like this:

NSMutableArray *arrayName;

To add data to an NSMutableArray, you need to define the NSMutableArray to use, use
the addObject method, and specify the data to add:

[arrayName addObject: newObject];

Suppose you had the following NSMutableArray and filled it with data like this:

NSString *object1 = @"Hello";
NSString *object2 = @"world!";
NSString *object3 = @"Good-bye";
NSMutableArray *myArray;
myArray= [NSMutableArray arrayWithObjects: object1, object2, object3, nil];

You could add data to this array by using code like this:

[myArray addObject: @"New item"];

CHAPTER 10: Arrays 150

This would add the object @"New item" at the end of the array named myArray. To see
how the addObject method works, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSString *object1 = @"Hello";
 NSString *object2 = @"world!";
 NSString *object3 = @"Good-bye";
 NSMutableArray *myArray;
 myArray= [NSMutableArray arrayWithObjects: object1, object2, object3, nil];
 for (NSString *randomVariable in myArray)
 {
 NSLog (@"Array element = %@", randomVariable);
 }
 [myArray addObject: @"New item"];
 NSLog (@"**********");
 for (NSString *randomVariable in myArray)
 {
 NSLog (@"Array element = %@", randomVariable);
 }
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

7. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:
2010–09-03 16:14:56.614 VariableTest[26819:a0f] Array element = Hello
2010–09-03 16:14:56.614 VariableTest[26819:a0f] Array element = world!
2010–09-03 16:14:56.615 VariableTest[26819:a0f] Array element = Good-bye
2010–09-03 16:14:56.616 VariableTest[26819:a0f] **********
2010–09-03 16:14:56.617 VariableTest[26819:a0f] Array element = Hello
2010–09-03 16:14:56.619 VariableTest[26819:a0f] Array element = world!
2010–09-03 16:14:56.620 VariableTest[26819:a0f] Array element = Good-bye
2010–09-03 16:14:56.633 VariableTest[26819:a0f] Array element = New item

The first time the for loop runs, it prints all three items in the array (Hello, world!, and
Good-bye). The second time the for loops runs, it prints four items stored in the array
(Hello, world!, Good-bye, and New item). The addObject method always adds the new
item at the end of the array.

CHAPTER 10: Arrays 151

Inserting Items into an Array
The addObject method is fine when you just want to store an item at the end of the
array. However, what if you want to store an item in a specific part of an array, such as
the beginning or somewhere in the middle? In that case, you have to use the
insertObject method, which looks like this:

[arrayName insertObject: newObject atIndex: index];

The main difference between the addObject method and the insertObject method is
that when you use the insertObject method, you must also specify the index position
where you want to add the new item. If you wanted to insert a new item as the second
item in the array, which would be index position 1, you would do so like this:

[arrayName insertObject: newObject atIndex: 1];
[myArray addObject: @"New item"];

This would add the object @"New item" at the end of the array named myArray. To see
how the addObject method works, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click on the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSString *object1 = @"Hello";
 NSString *object2 = @"world!";
 NSString *object3 = @"Good-bye";//[NSNumber numberWithInt:45];
 NSMutableArray *myArray;
 myArray= [NSMutableArray arrayWithObjects: object1, object2, object3, nil];
 for (NSString *randomVariable in myArray)
 {
 NSLog (@"Array element = %@", randomVariable);
 }
 [myArray insertObject: @"New item" atIndex: 1];
 NSLog (@"**********");
 for (NSString *randomVariable in myArray)
 {
 NSLog (@"Array element = %@", randomVariable);
 }
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

7. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:
2010–09-03 19:00:06.133 VariableTest[27100:a0f] Array element = Hello

CHAPTER 10: Arrays 152

2010–09-03 19:00:06.136 VariableTest[27100:a0f] Array element = world!
2010–09-03 19:00:06.137 VariableTest[27100:a0f] Array element = Good-bye
2010–09-03 19:00:06.139 VariableTest[27100:a0f] **********
2010–09-03 19:00:06.144 VariableTest[27100:a0f] Array element = Hello
2010–09-03 19:00:06.144 VariableTest[27100:a0f] Array element = New item
2010–09-03 19:00:06.145 VariableTest[27100:a0f] Array element = world!
2010–09-03 19:00:06.146 VariableTest[27100:a0f] Array element = Good-bye

Just remember that when you specify an index position for inserting an item into an
array, that index position must be available. So, for example, if you have an array that
consists of three items, which would correspond to index positions 0, 1, and 2, and you
try to insert a new item at any index position that’s 3 or higher, your program won’t
work.

Deleting Items from an Array
Just as you can add and insert new items into an array, you can delete items from an
array. When you delete an item, you must specify the index position of the item that you
want to delete.

There are actually several methods you can use to delete an item from an array:

 removeLastObject: Deletes the last item in the array

 removeObjectAtIndex: Deletes an item at a specific index position

 removeAllObjects: Deletes everything from an array

 removeObject: Deletes all instances of an item stored in an array

Deleting the Last Item in an Array
When you just want to delete the last item in an array, you need to specify the array
name and use the removeLastObject method like this:

[arrayName removeLastObject];

Deleting an Item from a Specific Index Position
Another way to delete an item from an array is to specify the index position of the item
that you want to delete using this code:

[arrayName removeObjectAtIndex: index];

So if you wanted to delete the second item in an array, you would specify index position
1:

[arrayName removeObjectAtIndex: 1];

CHAPTER 10: Arrays 153

Deleting Every Item from an Array
If you need to clear out an entire array, you could delete items one at a time, but it’s
much faster to wipe out everything at once using the removeAllObjects method like this:

[arrayName removeAllObjects];

Deleting All Instances of an Item from an Array
It’s possible to store identical data in different parts of an array. For example, you might
store the string @"Hello" in the first index position of an array and also in the sixth index
position of that same array.

If you want to delete all @"Hello" strings in an array, you can use the removeObject
method and specify the data that you want to delete:

[arrayName removeObject: object];

So if you wanted to delete the @"Hello" string from an array, you would use this code:

[arrayName removeObject: @"Hello"];

To see all the different ways to delete items from an array, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored inside the Classes folder. The

code for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSString *object1 = @"Hello";
 NSString *object2 = @"world!";
 NSString *object3 = @"Good-bye";
 NSString *object4 = @"Hello";
 NSString *object5 = @"More data";
 NSString *object6 = @"Hello";
 NSString *object7 = @"Last data";
 NSMutableArray *myArray;
 myArray= [NSMutableArray arrayWithObjects: object1, object2, object3, object4,
object5, object6, object7, nil];
 NSLog (@"***** Original array *****");
 for (NSString *randomVariable in myArray)
 {
 NSLog (@"Array element = %@", randomVariable);
 }

 NSLog (@" ");
 NSLog (@"***** Deleting last array item *****");
 [myArray removeLastObject];
 for (NSString *randomVariable in myArray)
 {
 NSLog (@"Array element = %@", randomVariable);
 }

CHAPTER 10: Arrays 154

 NSLog (@" ");
 NSLog (@"***** Deleting item at index position 2 *****");
 [myArray removeObjectAtIndex: 2];
 for (NSString *randomVariable in myArray)
 {
 NSLog (@"Array element = %@", randomVariable);
 }

 NSLog (@" ");
 NSLog (@"***** Deleting all instances of Hello *****");
 [myArray removeObject: @"Hello"];
 for (NSString *randomVariable in myArray)
 {
 NSLog (@"Array element = %@", randomVariable);
 }
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button or choose Build ➤ Build and Run. As long as you
didn’t mistype anything, you should see a blank window pop up.

6. Quit your program by clicking the Stop button or choosing Product ➤ Stop.

7. Choose Run ➤ Console or press R. You should see the printed statements
created by the NSLog command:

2010–09-03 20:48:16.715 VariableTest[27435:a0f] ***** Original array *****
2010–09-03 20:48:16.725 VariableTest[27435:a0f] Array element = Hello
2010–09-03 20:48:16.726 VariableTest[27435:a0f] Array element = world!
2010–09-03 20:48:16.726 VariableTest[27435:a0f] Array element = Good-bye
2010–09-03 20:48:16.727 VariableTest[27435:a0f] Array element = Hello
2010–09-03 20:48:16.729 VariableTest[27435:a0f] Array element = More data
2010–09-03 20:48:16.730 VariableTest[27435:a0f] Array element = Hello
2010–09-03 20:48:16.731 VariableTest[27435:a0f] Array element = Last data
2010–09-03 20:48:16.732 VariableTest[27435:a0f]
2010–09-03 20:48:16.738 VariableTest[27435:a0f] ***** Deleting last array item *****
2010–09-03 20:48:16.740 VariableTest[27435:a0f] Array element = Hello
2010–09-03 20:48:16.741 VariableTest[27435:a0f] Array element = world!
2010–09-03 20:48:16.742 VariableTest[27435:a0f] Array element = Good-bye
2010–09-03 20:48:16.742 VariableTest[27435:a0f] Array element = Hello
2010–09-03 20:48:16.743 VariableTest[27435:a0f] Array element = More data
2010–09-03 20:48:16.744 VariableTest[27435:a0f] Array element = Hello
2010–09-03 20:48:16.758 VariableTest[27435:a0f]
2010–09-03 20:48:16.759 VariableTest[27435:a0f] ***** Deleting item at index position 2

2010–09-03 20:48:16.760 VariableTest[27435:a0f] Array element = Hello
2010–09-03 20:48:16.761 VariableTest[27435:a0f] Array element = world!
2010–09-03 20:48:16.762 VariableTest[27435:a0f] Array element = Hello
2010–09-03 20:48:16.763 VariableTest[27435:a0f] Array element = More data
2010–09-03 20:48:16.764 VariableTest[27435:a0f] Array element = Hello
2010–09-03 20:48:16.764 VariableTest[27435:a0f]
2010–09-03 20:48:16.765 VariableTest[27435:a0f] ***** Deleting all instances of Hello

2010–09-03 20:48:16.766 VariableTest[27435:a0f] Array element = world!
2010–09-03 20:48:16.766 VariableTest[27435:a0f] Array element = More data

CHAPTER 10: Arrays 155

Summary
Arrays let you store multiple chunks of data in a single variable. To create an array, you
have to create a pointer to an array based on the NSArray or NSMutableArray class. If
you just want to store data in an array, use the NSArray class. If you want your program
to be able to add data to or delete data from an array while your program is running, use
the NSMutableArray class.

Arrays can store different types of data or the same type of data. If you store the same
type of data in an array, you can use fast enumeration to access every item in your
array. If you store different types of data in an array, you need to use a traditional for
loop to retrieve each item in the array.

You can add an item to an NSMutableArray at the end of that array or at a specific index
position. You can also delete data from an array in several ways: delete data from a
specific position in the array (either from the end of the array or at a specific index
position), delete one or more instances of data stored in the array, or delete all items
from an array. Arrays are just one way to store multiple, related chunks of data in a
single variable.

CHAPTER 10: Arrays 156

157

157

 Chapter

Dictionaries and Sets
When you store data in an array, you can retrieve it by searching for that specific data or

by keeping track of the index position of that data. Since searching for data or storing

index positions of data can be cumbersome, there are two other data structures you can

use called a dictionary and a set.

Dictionaries act like arrays, but they contain a paired key for each stored value, allowing

you to search for a stored value just by knowing its key. Sets make it easy to compare

lists and are useful for grouping items and determining whether one set is a subset or

intersection of another set.

In this chapter, we explore the ins and outs of both of these data structures.

Dictionary Basics
A dictionary stores two chunks of data. First, there’s the actual data or value itself that

you want to store. Second, there’s a key associated with that value. This key can be any

short word or phrase that helps identify your actual data. Now instead of trying to search

for your data, you just search for this key. Once you find the key, the key will point to

your value, as shown in Figure 11–1.

Figure 11–1. A dictionary stores values and keys associated with that value.

11

CHAPTER 11: Dictionaries and Sets 158

For example, you could store a list of phone numbers in an array, but how would you

know how to find the one phone number you wanted? Trying to remember which index

position each phone number is stored in would prove difficult, and trying to search for a

specific phone number is equally clumsy.

However, if you stored each phone number with a key, where each key contained a

person’s name, you could use the keys to find a desired phone number. Instead of

searching for the phone number, you could search for the name John Doe or M. Smith,

and that key would show you John Doe’s or M. Smith’s phone number.

To create a dictionary for storing data, you can create an NSDictionary or an

NSMutableDictionary. The NSDictionary can store data but will not let you add, change,

or remove data later. The NSMutableDictionary can store, add, change, or delete data

from the dictionary while your program is running.

Creating and Putting Data in a Dictionary
When you create a dictionary, you have to decide whether you want to create a static

dictionary (NSDictionary) that can only store data but not let you modify it or create a

dynamic dictionary (NSMutableDictionary) that can store, add, or remove data while

your program runs.

To create and initialize an NSDictionary, you need to use the

dictionaryWithObjectsAndKeys method:

NSDictionary *myDictionary = [NSDictionary dictionaryWithObjectsAndKeys: @"Data1",
@"Key1", @"Data2", @"Key2", nil];

When filling a dictionary with data using the dictionaryWithObjectsAndKeys method, you

must make sure each chunk of data is immediately followed by its associated key. When

you’re done adding data, you must end the list with nil.

You can also use the dictionaryWithObjectsAndKeys method to create and initialize an

NSMutableDictionary too. This can be convenient when storing one or two key-value

pairs. However, if you need to store large amounts of data, you may find it easier to use

the setObject and forKey methods to add a single key-value pair at a time.

To use the setObject and forKey methods, you must first declare an

NSMutableDictionary with a pointer:

NSMutableDictionary *myOtherDictionary = [NSMutableDictionary dictionary];

This creates a pointer to an empty dictionary object. After you have created a dictionary,

you can fill it with data. Data in a dictionary consists of a key-value pair where you store

the data (value) along with its key.

For each chunk of data (a key-value pair) that you want to store in a dictionary, you have

to use the setObject and forKey methods on a separate line like this:

[dictionaryName setObject: @"Data" forKey: @"Key"];

CHAPTER 11: Dictionaries and Sets 159

In the previous code, you would use the actual dictionary name and substitute your

actual data and key in between the double quotation marks. If your dictionary was

named phonebook and you wanted to store the data 555-1478 with a key John Doe, you

could use the following:

[phoneBook setObject: @"555-1478" forKey: @"John Doe"];

Counting the Items Stored in a Dictionary
After you have stored data in a dictionary, you can always count the number of items

stored in that dictionary by using the count command:

[dictionaryName count];

The dictionaryName simply represents the name of your dictionary, and the count

command returns the number of items in that dictionary, so the entire line of previous

code evaluates to a single number. If dictionaryName held six key-value pairs of data,

the previous code would return the number 6.

To see how to count items in a dictionary, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored in the Classes folder. The code

for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSMutableDictionary *myDictionary = [NSMutableDictionary dictionary];
 [myDictionary setObject: @"555-1212" forKey: @"John Doe"];
 [myDictionary setObject: @"555-9999" forKey: @"Al Jones"];
 [myDictionary setObject: @"555-5555" forKey: @"Mary Smith"];

 int counter;
 counter = [myDictionary count];
 NSLog (@"Number of items = %i", counter);
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button, or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit the program, such as by clicking the Stop button or choosing Product ➤

Stop from the Xcode pull-down menus.

7. Choose Run ➤ Console, or press R. You should see the printed statements

created by the NSLog command:

2010-09-06 14:39:48.536 VariableTest[656:a0f] Number of items = 3

CHAPTER 11: Dictionaries and Sets 160

Retrieving an Item from a Dictionary
To retrieve an item from a dictionary, you only need to know the key associated with that

data, using the objectForKey method like this:

[dictionaryName objectForKey: @"Key"];

The previous code returns the data associated with the key, so you may need to create

a variable to hold this data:

NSString *myString;
myString = [myDictionary objectForKey: @"Key"];

To see how to retrieve data from a dictionary by using a key, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored in the Classes folder. The code

for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSMutableDictionary *myDictionary = [NSMutableDictionary dictionary];
 [myDictionary setObject: @"555-1212" forKey: @"John Doe"];
 [myDictionary setObject: @"555-9999" forKey: @"Al Jones"];
 [myDictionary setObject: @"555-5555" forKey: @"Mary Smith"];

 int counter;
 counter = [myDictionary count];
 NSLog (@"Number of items = %i", counter);

 NSString *myString;
 myString = [myDictionary objectForKey: @"Al Jones"];
 NSLog (@"Al Jones is associated with %@", myString);
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button, or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit the program, such as by clicking the Stop button or choosing Product ➤

Stop from the Xcode pull-down menus.

7. Choose Run ➤ Console, or press R. You should see the printed statements

created by the NSLog command:

2010-09-06 16:15:53.608 VariableTest[1041:a0f] Number of items = 3
2010-09-06 16:15:53.611 VariableTest[1041:a0f] Al Jones is associated with 555-9999

CHAPTER 11: Dictionaries and Sets 161

Deleting Data from a Dictionary
If you have an NSMutableDictionary, you may want to remove data from it. To do this,

you need to identify the key associated with that data and then use the

removeObjectForKey method like this:

[dictionaryName removeObjectForKey: @"Key"];

In case you want to remove all data from a dictionary, you can use the removeAllObjects

method:

[dictioinaryName removeAllObjects];

To see how the removeObjectForKey and removeAllObjects methods, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored in the Classes folder. The code

for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSMutableDictionary *myDictionary = [NSMutableDictionary dictionary];
 [myDictionary setObject: @"555-1212" forKey: @"John Doe"];
 [myDictionary setObject: @"555-9999" forKey: @"Al Jones"];
 [myDictionary setObject: @"555-5555" forKey: @"Mary Smith"];

 int counter;
 counter = [myDictionary count];
 NSLog (@"Number of items = %i", counter);

 NSString *myString;
 myString = [myDictionary objectForKey: @"Al Jones"];
 NSLog (@"Al Jones is associated with %@", myString);

 [myDictionary removeObjectForKey: @"John Doe"];
 NSLog (@"Number of items = %i", [myDictionary count]);

 [myDictionary removeAllObjects];
 NSLog (@"Number of items = %i", [myDictionary count]);
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button, or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit the program, such as by clicking the Stop button or choosing Product ➤

Stop from the Xcode pull-down menus.

7. Choose Run ➤ Console, or press R. You should see the printed statements

created by the NSLog command:

2010-09-06 16:46:21.010 VariableTest[1160:a0f] Number of items = 3
2010-09-06 16:46:21.023 VariableTest[1160:a0f] Al Jones is associated with 555-9999

CHAPTER 11: Dictionaries and Sets 162

2010-09-06 16:46:21.025 VariableTest[1160:a0f] Number of items = 2
2010-09-06 16:46:21.025 VariableTest[1160:a0f] Number of items = 0

Copying a Dictionary
When you create an NSDictionary, you can add data to it only once. If you later want to

add or delete data, you can’t. The simplest solution is to create and use an

NSMutableDictionary right from the start.

A second solution is to copy the contents of an NSDictionary into an

NSMutableDictionary. Then you can manipulate the contents in the

NSMutableDictionary. This might be handy when you want only one part of your

program to modify the data in a dictionary but you don’t want to risk giving your entire

program the ability to modify the contents of a dictionary.

To copy the contents of a dictionary into another dictionary, you can use the

addEntriesFromDictionary method like this:

[newDictionary addEntriesFromDictionary: oldDictionary];

This code copies the data from the oldDictionary and puts it into the newDictionary.

To see how the addEntriesFromDictionary method works, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored in the Classes folder. The code

for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSDictionary *staticDictionary = [NSDictionary dictionaryWithObjectsAndKeys:
@"Data1", @"Key1", @"Data2", @"Key2", nil];
 NSLog (@"Number of items in NSDictionary = %i", [staticDictionary count]);

 NSMutableDictionary *newDict = [NSMutableDictionary dictionary];
 [newDict addEntriesFromDictionary: staticDictionary];
 NSLog (@"Count in new Dictionary = %i", [newDict count]);
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button, or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit the program, such as by clicking the Stop button or choosing Product ➤

Stop from the Xcode pull-down menus.

7. Choose Run ➤ Console, or press R. You should see the printed statements

created by the NSLog command:

2010-09-06 17:48:38.577 VariableTest[1374:a0f] Number of items in NSDictionary = 2
2010-09-06 17:48:38.578 VariableTest[1374:a0f] Count in new Dictionary = 2

CHAPTER 11: Dictionaries and Sets 163

Copying Dictionary Data Into an Array
After you’ve stored data in a dictionary, you’ll essentially have two lists of data: the keys

and the associated values. If you need to use this information separately, you can

selectively copy all the keys or all the values from a dictionary and store them in an

array. To retrieve all the keys or values stored in a dictionary, you need to use the

allKeys or allValues method:

[dictionaryName allKeys];

or

[dictionaryName allValues];

Both the allKeys and allValues methods return an array, so you’ll need to assign the

previous code to an array:

NSArray *myArray = [myDictionary allKeys];

To see how to retrieve keys and values from a dictionary and store them in an array,

follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored in the Classes folder. The code

for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSMutableDictionary *myDictionary = [NSMutableDictionary dictionary];
 [myDictionary setObject: @"555-1212" forKey: @"John Doe"];
 [myDictionary setObject: @"555-5555" forKey: @"Mary Smith"];
 [myDictionary setObject: @"555-9999" forKey: @"Al Jones"];
 NSArray *myArray = [myDictionary allKeys];
 int i;
 for (i = 0; i < [myDictionary count]; i++)
 {
 NSLog (@"Key %i = %@", i, [myArray objectAtIndex:i]);
 }

 NSArray *secondArray = [myDictionary allValues];
 for (i = 0; i < [myDictionary count]; i++)
 {
 NSLog (@"Value %i = %@", i, [secondArray objectAtIndex:i]);
 }
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button, or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit the program, such as by clicking the Stop button or choosing Product ➤

Stop from the Xcode pull-down menus.

CHAPTER 11: Dictionaries and Sets 164

7. Choose Run ➤ Console, or press R. You should see the printed statements

created by the NSLog command:

2010-09-07 15:10:19.045 VariableTest[3579:a0f] Key 0 = John Doe
2010-09-07 15:10:19.048 VariableTest[3579:a0f] Key 1 = Mary Smith
2010-09-07 15:10:19.050 VariableTest[3579:a0f] Key 2 = Al Jones
2010-09-07 15:10:19.058 VariableTest[3579:a0f] Value 0 = 555-1212
2010-09-07 15:10:19.059 VariableTest[3579:a0f] Value 1 = 555-5555
2010-09-07 15:10:19.060 VariableTest[3579:a0f] Value 2 = 555-9999

Sorting Keys
You can store data in a dictionary in any order. If you later need to sort this data, you

can use the values stored in your dictionary to sort the keys by using the

keysSortedByValueUsingSelector method. This method returns your sorted list of keys

as an array.

To see how to sort a dictionary by its values, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored in the Classes folder. The code

for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSMutableDictionary *myDictionary = [NSMutableDictionary dictionary];
 [myDictionary setObject: @"75" forKey: @"John Doe"];
 [myDictionary setObject: @"42" forKey: @"Mary Smith"];
 [myDictionary setObject: @"09" forKey: @"Al Jones"];

 NSArray *sortedKeysArray = [myDictionary
keysSortedByValueUsingSelector:@selector(compare:)];
 int i;
 for (i = 0; i < [sortedKeysArray count]; i++)
 {
 NSLog (@"Array element %i = %@", i, [sortedKeysArray objectAtIndex:i]);
 }
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button, or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit the program, such as by clicking the Stop button or choosing Product ➤

Stop from the Xcode pull-down menus.

7. Choose Run ➤ Console, or press R. You should see the printed statements

created by the NSLog command:

2010-09-07 16:19:47.672 VariableTest[3829:a0f] Array element 0 = Al Jones
2010-09-07 16:19:47.677 VariableTest[3829:a0f] Array element 1 = Mary Smith

CHAPTER 11: Dictionaries and Sets 165

2010-09-07 16:19:47.677 VariableTest[3829:a0f] Array element 2 = John Doe

Because the value 09 is associated with the key Al Jones, this value is the lowest so Al
Jones gets stored first. The next highest value is 42, which means Mary Smith gets

stored second. Finally, the highest value is 75, so John Doe gets stored last in the array.

Access All Items in a Dictionary
A dictionary can store dozens, hundreds, or thousands of key-value pairs of data. To

access all items stored in a dictionary, you can use the for-in statement:

id myObject;
for (myObject in myDictionary)

The first line of this code declares an object variable using the id keyword. The second

line of code tells the computer to access each key in the dictionary where each key gets

stored in the myObject variable.

The for-in statement repeat for each key-value pair stored in the dictionary, so if you

have 23 key-value pairs stored in a dictionary, the for-in loop will repeat 23 times.

To see how the for-in statement can access each item in a dictionary, follow these

steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored in the Classes folder. The code

for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSMutableDictionary *myDictionary = [NSMutableDictionary dictionary];
 [myDictionary setObject: @"75" forKey: @"John Doe"];
 [myDictionary setObject: @"42" forKey: @"Mary Smith"];
 [myDictionary setObject: @"09" forKey: @"Al Jones"];

 id myObject;
 for (myObject in myDictionary)
 {
 NSLog (@"Key = %@", myObject);
 NSLog (@"Value = %@", [myDictionary objectForKey: myObject]);
 NSLog (@"*****");
 }
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button, or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit the program, such as by clicking the Stop button or choosing Product ➤

Stop from the Xcode pull-down menus.

CHAPTER 11: Dictionaries and Sets 166

7. Choose Run ➤ Console, or press R. You should see the printed statements

created by the NSLog command:

2010-09-07 17:27:37.196 VariableTest[4190:a0f] Key = John Doe
2010-09-07 17:27:37.199 VariableTest[4190:a0f] Value = 75
2010-09-07 17:27:37.199 VariableTest[4190:a0f] *****
2010-09-07 17:27:37.200 VariableTest[4190:a0f] Key = Mary Smith
2010-09-07 17:27:37.201 VariableTest[4190:a0f] Value = 42
2010-09-07 17:27:37.202 VariableTest[4190:a0f] *****
2010-09-07 17:27:37.202 VariableTest[4190:a0f] Key = Al Jones
2010-09-07 17:27:37.202 VariableTest[4190:a0f] Value = 09
2010-09-07 17:27:37.203 VariableTest[4190:a0f] *****

Using Sets
Besides arrays (see Chapter 8) and dictionaries, a third type of data structure available is

a set. A set is a group of related data such as the numbers 5, 38, and 7, or the letters A,

M, Y, and T. What makes sets useful, as data structures, are the three types of operations

you can perform on a set: membership, union, and intersection.

The membership operation lets you quickly verify whether an item is a member of a set.

This can be handy when you need to check whether something belongs in a larger

group, such as a list of names that are allowed access to a computer. When a user

types in a name, the computer could simply check whether this name is a member of

the set of valid usernames.

If you stored a list of valid usernames in an array or dictionary, you would have to

exhaustively check each item in the array or dictionary with the user’s name. If your

array or dictionary contained 1,000 valid usernames, then you would have to compare

the user’s name with each of these 1,000 valid usernames before determining whether it

matched. With a set, you could determine whether the name was a member of that valid

username set in a single operation.

The union operation lets you combine two sets into a single set. The intersection

operation lets you identify the common items shared by two sets.

Creating and Putting Data in a Set
You can create two types of sets: an NSSet, which can only store data but won’t let you

modify it, or an NSMutableSet, which lets you store, add, or remove data while your

program runs.

NOTE: If you want to modify data in an NSSet, you can copy it into an NSMutableSet using the

setWithSet method.

To create and initialize an NSSet or NSMutableSet, you need to create a pointer like this:

NSSet *mySet;

CHAPTER 11: Dictionaries and Sets 167

NSMutableSet *myOtherSet;

Then you can use the setWithObjects method to define a list of data to store in a set like

this:

NSSet *mySet;
mySet = [NSSet setWithObjects: @"Joe", @"Mary", @"Sue", @"Olly", nil];

When using the setWithObjects method, make sure you end your list with nil, or else

the computer won’t know that it’s reached the end of the data list that you want to add

into the set.

If you have data already stored in an array, you can store this array data into a set by

using the setWithArray method.

Counting the Number of Items in a Set
No matter how you fill a set, you can always count how many items are in that set by

using the count method:

NSSet *mySet;
mySet = [NSSet setWithObjects: @"Joe", @"Mary", @"Sue", @"Olly", nil];
NSLog (@"Count = %i", [mySet count]);

This code would simply print the following:

Count = 4

Checking Whether Data Is in a Set
After you store data in a set, you can later check whether that set contains a specific

chunk of data by using the containsObject method:

[setName containsObject: object];

This line of code returns a Boolean value of either YES (if the object is already in the set)

or NO (if the object is not already stored in the set). To see how to use the

containsObject method with a set, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored in the Classes folder. The code

for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSSet *mySet;
 mySet = [NSSet setWithObjects: @"Joe", @"Mary", @"Sue", @"Olly", nil];
 NSLog (@"Set members = %i", [mySet count]);
 if ([mySet containsObject:@"Joe"])
 {
 NSLog (@"Found member in set");
 }

CHAPTER 11: Dictionaries and Sets 168

 else
 {
 NSLog (@"No member found in set");
 }
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button, or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit the program, such as by clicking the Stop button or choosing Product ➤

Stop from the Xcode pull-down menus.

7. Choose Run ➤ Console, or press R. You should see the printed statements

created by the NSLog command:

2010-09-08 09:30:02.714 VariableTest[2090:a0f] Set members = 4
2010-09-08 09:30:02.720 VariableTest[2090:a0f] Found member in set

Adding and Removing Data in a Set
If you create an NSMutableSet, you can add and remove data from that set while your

program runs. To add an item to an NSMutableSet, you just need to use the addObject

method and specify the item to add like this:

[mySet addObject: @"Bo"];

If you have data already stored in an array, you can add that entire array to a set using

the addObjectsFromArray method like this:

NSArray *myArray = [NSArray arrayWithObjects: @"Hello", @"world", @"Good-bye", nil];
[mySet addObjectsFromArray: myArray];

Just as you can add a single item or an group of items to a set, so can you also remove

a single item or all items from a set. To remove an item from a set, you need to use the

removeObject method and specify the exact item you want to remove from the set:

[mySet removeObject:@"Joe"];

If you just want to remove everything in a set, you can use the removeAllObjects

method:

[mySet removeAllObjects];

To see how to add and remove items with sets, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored in the Classes folder. The code

for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
NSMutableSet *mySet;

CHAPTER 11: Dictionaries and Sets 169

 mySet = [NSMutableSet setWithObjects: @"Joe", @"Mary", @"Sue", @"Olly", nil];
 NSLog (@"Set members = %i", [mySet count]);

 [mySet addObject: @"Bo"];
 NSLog (@"Set members = %i", [mySet count]);

 NSString *object1 = @"Hello";
 NSString *object2 = @"world!";
 NSNumber *object3 = [NSNumber numberWithInt:45];
 NSArray *myArray = [NSArray arrayWithObjects: object1, object2, object3, nil];

 [mySet addObjectsFromArray: myArray];
 NSLog (@"Set members = %i", [mySet count]);

 [mySet removeObject:@"Joe"];
 NSLog (@"Set members = %i", [mySet count]);

 [mySet removeAllObjects];
 NSLog (@"Set members = %i", [mySet count]);
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button, or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit the program, such as by clicking the Stop button or choosing Product ➤

Stop from the Xcode pull-down menus.

7. Choose Run ➤ Console, or press R. You should see the printed statements

created by the NSLog command:

2010-09-29 22:13:05.779 VariableTest[5949:a0f] Set members = 4
2010-09-29 22:13:05.782 VariableTest[5949:a0f] Set members = 5
2010-09-29 22:13:05.783 VariableTest[5949:a0f] Set members = 8
2010-09-29 22:13:05.784 VariableTest[5949:a0f] Set members = 7
2010-09-29 22:13:05.785 VariableTest[5949:a0f] Set members = 0

Accessing All Items in a Set
When you store data in a set, you may later want to know how to access each item. One

way to do this is through a for-in statement:

id myObject;
for (myObject in mySet)

The first line of this code declares an object variable using the id keyword. The second

line of code tells the computer to access each item in a set. If you have 30 chunks of

data stored in a set, the for-in loop will repeat 30 times.

To see how the for-in statement can access each item in a set, follow these steps:

1. Open the VariableTest project from the previous section.

CHAPTER 11: Dictionaries and Sets 170

2. Click the VariableTestAppDelegate.m file stored in the Classes folder. The code

for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSSet *mySet;
 mySet = [NSSet setWithObjects: @"Joe", @"Mary", @"Sue", @"Olly", nil];
 NSLog (@"Set members = %i", [mySet count]);

 id testObject;
 for (testObject in mySet)
 {
 NSLog (@"Member = %@", testObject);
 }
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button, or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit the program, such as by clicking the Stop button or choosing Product ➤

Stop from the Xcode pull-down menus.

7. Choose Run ➤ Console, or press R. You should see the printed statements

created by the NSLog command:

2010-09-08 09:58:36.571 VariableTest[2177:a0f] Set members = 4
2010-09-08 09:58:36.577 VariableTest[2177:a0f] Member = Sue
2010-09-08 09:58:36.578 VariableTest[2177:a0f] Member = Joe
2010-09-08 09:58:36.582 VariableTest[2177:a0f] Member = Mary
2010-09-08 09:58:36.583 VariableTest[2177:a0f] Member = Olly

Getting the Intersection of Two Sets
If you have two sets, you can check whether a common item appears in both sets by

using the intersectsSet method like this:

[firstSet intersectsSet: secondSet]

If a common item appears in both sets, then the intersectsSet method returns a YES

Boolean value. Otherwise, it returns a NO Boolean value.

Identifying a Subset of a Set
If all the members of one set are contained within another set, that first set is considered

a subset. For example, suppose you defined a set like this:

mySet = [NSSet setWithObjects: @"Joe", @"Mary", @"Sue", @"Olly", nil];

If you defined another set like this:

otherSet = [NSSet setWithObjects: @"Joe", @"Mary", nil];

CHAPTER 11: Dictionaries and Sets 171

then the otherSet is considered to be a subset of mySet since every item in otherSet

(Joe and Mary) is also contained in mySet. To identify a subset, you need to use the

isSubsetOfSet method like this:

[otherSet isSubsetOfSet: mySet]

This code will return a YES Boolean value if otherSet is a subset of mySet. Otherwise, it

returns a NO Boolean value. Note that if you reverse the position of the two sets, you can

completely change the outcome:

[mySet isSubsetOfSet: otherSet]

In this case, the code asks whether mySet is a subset of otherSet. Since it is not, it

returns a NO Boolean value.

To see how to check for the intersection and subset of a set, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the VariableTestAppDelegate.m file stored in the Classes folder. The code

for that file appears in the middle pane of the Xcode window.

3. Modify the code in the VariableTestAppDelegate.m file as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSSet *mySet;
 mySet = [NSSet setWithObjects: @"Joe", @"Mary", @"Sue", @"Olly", nil];
 NSLog (@"Set members = %i", [mySet count]);

 NSSet *newSet;
 newSet = [NSSet setWithObjects: @"Bill", @"Mary", nil];

 if ([mySet intersectsSet: newSet])
 {
 NSLog (@"Found a match");
 }
 else
 {
 NSLog (@"No match");
 }

 NSSet *thirdSet;
 thirdSet = [NSSet setWithObjects: @"Joe", @"Mary", nil];

 if ([mySet isSubsetOfSet: newSet])
 {
 NSLog (@"Subset found");
 }
 else
 {
 NSLog (@"No subset");
 }

 if ([thirdSet isSubsetOfSet: mySet])
 {
 NSLog (@"Subset");
 }

CHAPTER 11: Dictionaries and Sets 172

 else
 {
 NSLog (@"No subset");
 }
}

4. Choose File ➤ Save or press S to save your changes.

5. Click the Build and Run button, or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

6. Quit the program, such as by clicking the Stop button or choosing Product ➤

Stop from the Xcode pull-down menus.

7. Choose Run ➤ Console, or press R. You should see the printed statements

created by the NSLog command:

2010-09-29 22:37:32.985 VariableTest[6103:a0f] Set members = 4
2010-09-29 22:37:32.988 VariableTest[6103:a0f] Found a match
2010-09-29 22:37:32.989 VariableTest[6103:a0f] No subset
2010-09-29 22:37:32.992 VariableTest[6103:a0f] Subset

Summary
Two other ways of storing data are dictionaries and sets. Dictionaries act like arrays that

contain a paired key for each stored value, allowing you to search for a stored value just

by knowing its key. Sets are useful for grouping items together and determining whether

one set is a subset or intersection of another set. Sets make it easy to compare lists.

With both dictionaries and sets, you can add (and remove) one item at a time or add a

bunch of data stored in an array. You can completely empty both a dictionary and a set.

Dictionaries and sets are advanced data structures that you may never need to use, but

if you find yourself using arrays and finding that arrays are too clumsy, then consider

using a dictionary or a set. By choosing the right data structure, you can save yourself

time by not having to write a lot of code.

For example, if you stored data in two different arrays, trying to see whether one array

contained all the elements of a second array would involve a lot of code to compare

each item in the array. However, if you stored both arrays in two different sets, you

could use the isSubsetOfSet method and determine whether one set is a subset of

another using a single line of code.

Pick the right data structure, and your program can be easier to write and more reliable.

Pick the wrong data structure, and your program could be harder to write and less

reliable. The more you know about different types of data structures, the more likely

you’ll know how to choose the best one for your particular program.

173

173

 Chapter

Creating Classes and
Objects
In the previous chapters when you were working with strings (NSString), arrays

(NSArray), dictionaries (NSDictionary), and sets (NSSet), you were working with

predefined classes that Apple’s programmers have already created. Although it’s

entirely possible to write fairly sophisticated programs using the predefined classes

stored in the Cocoa framework, chances are good you’ll need to create custom classes

for your own programs, which means you need to know how to create your own classes.

A class defines the properties (data) and subprograms (methods) that work together in

isolation from the rest of your program. The basic idea behind a class is to act as a

modular building block to create a larger program. Ideally, each class should be

completely self-contained, so you can easily yank it out and replace it with a new class

without affecting the rest of your program.

Classes can be specific to a program that you’re working on, or they can be more

general, allowing you to reuse those classes in other programs. For example, you might

create a special mathematical class that performs scientific or financial calculations.

Once you create a class that works, you can plug it into another program, allowing you

to create other programs faster than writing each program from scratch every time.

To create your own classes, you’ll need to write Objective-C code. After you define a

class, you can use that class file to create multiple objects within your program. Ideally,

your class should be general enough so you can create multiple objects from it, but it’s

perfectly possible to create a class and just create a single object from it.

The two main features of every class are its properties and its methods. Properties let

your objects store data. Methods let your objects manipulate data or perform a specific

action. Although a class can exist without properties or methods, most classes include

one or more properties and one or more methods.

Creating properties and methods involves writing Objective-C code, so this chapter will

show you how to define properties and methods and where to define them in your class

files.

12

CHAPTER 12: Creating Classes and Objects 174

Creating a Class
Every class gets stored as a separate pair of files called the header (.h) and

implementation (.m). For convenience’s sake, you can store your class files inside the

Classes folder, or you can create and name your own folders to store your classes.

Xcode ignores the names of your folders since these folder names are for your

convenience in organizing all the files that make up your project.

When you create a class, your new class will be based on an existing class, so it

automatically inherits the properties and methods of that existing class. Although there

are different types of classes you can base your class on, you’ll most likely use the

NSObject class to create custom classes for your own program.

NOTE: Some other common types of classes include specialized features for representing data in
a window (NSDocument), controlling the basic drawing and printing functions of a program

(NSView), controlling a user interface (NSViewController), or controlling a single window in a

user interface (NSWindowController).

To create a class file, follow these steps:

1. Choose File ➤ New File. A template dialog box appears, as shown in Figure 12–1.

Figure 12–1. The template dialog box lets you choose the type of file to create.

CHAPTER 12: Creating Classes and Objects 175

NOTE: You can also right-click a folder, in the left pane of the Xcode window, where you want to
add a file. When a pop-up menu appears, choose New File to display the templates dialog box

(see Figure 12–1).

2. Click Cocoa Class under the Mac OS X category in the left pane of the template

dialog box.

3. Click the Objective-C class icon.

4. (Optional) Click the Subclass of pop-up menu, and choose the type of class you

want to base your class on, such as NSDocument. In most cases, you’ll use the

default class of NSObject.

5. Click the Next button. A Save As dialog box appears, letting you choose a name

for your class.

6. Type a descriptive name for your class. Names must not use spaces or special

characters. In general, use descriptive names for your classes, and capitalize the

first letter of words such as a class named MyClass or RobotMovementUnit.

7. Click the Finish button. Your new class files appear in the Classes folder, as

shown in Figure 12–2.

Figure 12–2. Your new class files appear in your selected folder.

CHAPTER 12: Creating Classes and Objects 176

NOTE: You can always drag a file to move it to a new folder or create a new folder to hold your

class files.

Understanding the Code in a Class
When you create a class, Xcode creates a header (.h) and an implementation (.m) file.

The header file contains the following basic code:

#import <Cocoa/Cocoa.h>

@interface Class : NSObject {
@private

}

@end

The basic idea behind the header file is to list all the properties and methods that other

parts of your program can use. Here’s what each line in the header file does:

 #import <Cocoa/Cocoa.h>: Includes all the Cocoa framework interfaces

for creating a basic Macintosh program. Without this, you would have

to write a lot of additional code yourself to handle basic chores such

as displaying windows and pull-down menus.

 @interface Class: NSObject {: Identifies your class name (which is

Class in this example) and shows which class it’s based on, which is

NSObject.

 @private: Identifies any variables that are used in the class but not

accessible to other parts of the program. You can also replace or add

@public to identify variables that are accessible to other parts of the

program.

 @end: Defines the end of the interface for your class file.

The header file typically defines the properties and methods available in a class. The

implementation file is where you’ll write most of your Objective-C code. Initially, the

implementation file of a class file looks like this:

#import "MyClass.h"

@implementation Class

- (id)init {
 if ((self = [super init])) {
 // Initialization code here.
 }

 return self;
}

CHAPTER 12: Creating Classes and Objects 177

- (void)dealloc {
 // Clean-up code here.

 [super dealloc];
}

@end

Here’s what each part of the implementation file does:

 #import "Class.h": Includes the class’s header file.

 @implementation Class: Defines the beginning of your implementation

file and identifies the name of your class (in this example it’s simply

Class).

 -(id)init: This block of code defines the initialization method, which

is where you’ll write Objective-C that needs to run first.

 -(void)dealloc {: This block of code defines the dealloc method,

which is the last method to run when your object is no longer needed.

This is where you’ll write Objective-C code to handle any cleanup

issues with your class.

Deleting Class Files
If you’ve created class files, you can always delete them at any time. When you delete

class files, you’ll have two options. One is to physically delete the class files and remove

them from your project. The second is to remove the references to those class files from

your project but keep them physically on your hard disk. That way, if you no longer need

a class in your program but think you might use that class in another project, you can

keep it for future use.

To delete class files, follow these steps:

1. Click the header file you want to delete.

2. Hold down the key, and click the accompanying implementation file that you

want to delete. Xcode highlights your two class files.

3. Choose Edit ➤ Delete. A dialog box appears, asking whether you want to delete

the files or just remove the references to those files, as shown in Figure 12–3.

CHAPTER 12: Creating Classes and Objects 178

Figure 12–3. You can physically delete class files or just remove the references to them.

4. Click the Also Move to Trash button (to physically delete your class files), or click

the Delete References button (to keep the class files but remove them from your

project).

NOTE: When you delete class files, you can’t undo this action, so make sure you really want to

delete any selected class files.

A Program Example of a Class
Working with classes involves several steps. First, you must create a class. Second, you

must make that class accessible to another part of your program using the #import

directive. Third, you must create an instance of that class using an object. Fourth, you

can finally use the object to access the methods and properties defined by the class.

If this sounds long and complicated, it’s not, but it will become clearer as you go

through the basic steps for creating and using a class:

1. Open the VariableTest project from the previous chapter.

2. Follow steps 1–8 in the “Creating a Class” section. In step 6 of these steps, name

your class MyClass.

3. Click the MyClass.m file stored in the Classes folder. The code for that file appears

in the middle pane of the Xcode window.

4. Modify the init method code in the MyClass.m file by adding the bold line as

follows:

- (id)init {
 if ((self = [super init])) {
 // Initialization code here.
 NSLog (@"Hello, world!");
 }

 return self;
}

CHAPTER 12: Creating Classes and Objects 179

At this point, all you’ve done is added an NSLog command inside the MyClass init

method. This init method will always run as soon as you create an instance of your

class. If you ran your program now, you wouldn’t see this “Hello, world!” message

because nowhere in your code have you created an instance of MyClass.

In the next steps, you’ll create an instance of MyClass within the

VariableTestAppDelegate.m file as follows:

5. Click the VariableTestAppDelegate.m file in the Classes folder. The middle pane

of the Xcode window displays your VariableTestAppDelegate.m code.

6. Add the line #import "MyClass.h" underneath the #import
"VariableTestAppDelegate.h" line like this:

#import "VariableTestAppDelegate.h"
#import "MyClass.h"

This #import "MyClass.h" file tells the computer to make all the code in the MyClass files

accessible inside this VariableTestAppDelegate.m file.

7. Modify the applicationDidFinishLaunching method as follows:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 MyClass *testObject = [[MyClass alloc] init];
 [testObject release];
}

The applicationDidFinishLaunching method runs as soon as your program starts

running. The first line inside this method creates an instance of MyClass by creating a

pointer called *testObject. When creating an instance of a class that you’ve created,

you also need to allocate memory for this object (using the alloc method) and run the

init method of the MyClass object (using the init method).

The second line inside the applicationDidFinishLaunching method runs the release

method. When you allocate memory for an object (using the alloc method), you should

eventually release that memory for that object when you no longer need that object any

more.

NOTE: Keeping track of your program’s memory usage is one of the biggest nuisances of writing

Objective-C programs and also the cause of the most common types of errors. If your program
keeps allocating memory without ever releasing it, you could run into a problem called a memory
leak, which can cause your program to crash or interfere with other running programs. When

writing Mac OS X programs, Xcode can use something called garbage collection, which means
the computer takes care of its memory to eliminate or reduce problems that involve memory

usage by your program.

8. Choose File ➤ Save or press S to save your changes.

9. Click the Build and Run button, or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

CHAPTER 12: Creating Classes and Objects 180

10. Quit the program by clicking the Stop button or choosing Product ➤ Stop from

the Xcode pull-down menus.

11. Choose Run ➤ Console, or press R. You should see the printed statements

created by the NSLog command:

2010-09-09 18:26:48.345 VariableTest[5059:a0f] Hello, world!

When you ran your program, these are the basic steps that occurred:

1. Your program ran and immediately launched the applicationDidFinishLaunching

method inside the VariableTestAppDelegate.m file.

2. The first line inside the applicationDidFinishLaunching method created an

instance of MyClass, allocated memory for that instance (testObject), and ran the

init method of MyClass.

3. The init method inside MyClass ran the NSLog command that printed “Hello,

world!” in the log window.

4. The second line inside the applicationDidFinishLaunching method releases the

memory allocated for testObject.

When you quit the program, you could peek inside the Log window and see the “Hello,

world!” message that the NSLog command, inside the init method, printed out.

Creating Methods
In the previous example, you simply added an NSLog command inside the existing init

method of MyClass. In most cases when you’re creating your own classes, you’ll need to

create additional methods and make them run from another part of your program.

The basic steps to creating a method are as follows:

1. Declare the method name in your class’s header (.h) file.

2. Write the actual code for the method in the class’s implementation (.m) file.

3. Call the method from another part of your program.

A typical method declaration looks like this:

-(data type)methodName: parameters;

The data type determines the type of value the method calculates, such as an integer or

floating-point number. If you wanted your method to calculate an integer, your method

declaration would look like this:

-(int)methodName: parameters;

In many cases, you simply want the method to run its code and not return a value at all.

When a method does not return any value, its data type is declared as void like this:

-(void)methodName: parameters;

6

CHAPTER 12: Creating Classes and Objects 181

The method name can be any descriptive name that you want. Typically, a method

name uses camel case where the first letter appears lowercase, but the first letter of

subsequent words appear in uppercase:

-(void) shootRockets: parameters;
-(float) predictStockPrice: parameters;
-(BOOL) trustMeBecauseYouLikeMe: parameters;

The parameters represent data that the method may need to work. If your method

doesn’t require any outside data to work, you can drop the parameter altogether:

-(void)methodName;

If your method requires an integer value, the method declaration might look like this with

an integer parameter:

-(void)methodName: (int)inputData;

To see how create a method in a class, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the MyClass.h file inside the Classes folder, and modify the code by adding

the bold text as follows:

#import <Cocoa/Cocoa.h>

@interface MyClass : NSObject {

@private

}

-(void)displayMessage;

@end

NOTE: A method declaration in a header (.h) file always ends with a semicolon.

3. Click the MyClass.m file inside the Classes folder, and add the displayMessage

method as follows:

#import "MyClass.h"

@implementation MyClass

- (id)init {
 if ((self = [super init])) {
 // Initialization code here.
 NSLog (@"Hello, world!");
 }

 return self;
}

- (void)dealloc {

CHAPTER 12: Creating Classes and Objects 182

 // Clean-up code here.

 [super dealloc];
}

-(void)displayMessage
{
 NSLog (@"Good-bye!");
}

@end

NOTE: When writing the implementation of your method, be sure that no semicolon appears at

the end of your method’s name.

4. Click the VariableTestAppDelegate.m file stored in the Classes folder, and modify

the code in the VariableTestAppDelegate.m file as follows:

#import "VariableTestAppDelegate.h"
#import "MyClass.h"

@implementation VariableTestAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 MyClass *testObject = [[MyClass alloc] init];
 [testObject displayMessage];
 [testObject release];
}

@end

5. Choose File ➤ Save or press S to save your changes.

6. Click the Build and Run button, or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

7. Quit the program by clicking the Stop button or choosing Product ➤ Stop from

the Xcode pull-down menus.

8. Choose Run ➤ Console, or press R. You should see the printed statements

created by the NSLog command:

2010-09-09 21:55:52.492 VariableTest[5314:a0f] Hello, world!
2010-09-09 21:55:52.494 VariableTest[5314:a0f] Good-bye!

The “Good-bye!” message comes from this line:

[testObject displayMessage];

This line tells the computer to run the displayMessage method stored in testObject.

Since testObject is an instance of the class MyClass, you have to peek inside the

CHAPTER 12: Creating Classes and Objects 183

MyClass implementation (.m) file to see the actual displayMessage method, which

contains the NSLog command that prints “Good-bye!”

Passing Parameters
A method can simply run its code in the same way every time it’s called from another

part of a program. However, a more flexible method might accept outside data and

modify its behavior based on that outside data. To accept data, a method needs to

accept to define a parameter list. The parameter list defines a data type and variable

name for each chunk of outside data it accepts:

-(void)methodName: (data type) variable name;

If you wanted a method to accept an integer value, your parameter list might look like

this:

-(void)methodName: (int) myAge;

To call this method and make it run, you would use code like this:

[objectName methodName: value];

Notice that if a method defines a parameter, then calling that method must also include

a value to pass as a parameter to the function. To see how parameters work with

methods, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the MyClass.h file inside the Classes folder, and modify the code as follows:

#import <Cocoa/Cocoa.h>

@interface MyClass : NSObject {

@private

}

-(void)displayMessage: (int)myLoop;

@end

3. Choose File ➤ Save or press S to save your changes.

4. Click the MyClass.m file inside the Classes folder, and add the displayMessage

method as follows:

#import "MyClass.h"

@implementation MyClass

- (id)init {
 if ((self = [super init])) {
 // Initialization code here.
 NSLog (@"Hello, world!");
 }

CHAPTER 12: Creating Classes and Objects 184

 return self;
}

- (void)dealloc {
 // Clean-up code here.

 [super dealloc];
}

-(void)displayMessage: (int)myLoop
{
 NSLog (@"The loop will repeat %i times", myLoop);
 int i;
 for (i = 0; i < myLoop; i++)
 {
 NSLog (@"The value of i = %i", i);
 }
}

@end

5. Click the VariableTestAppDelegate.m file stored in the Classes folder, and modify

the code in the VariableTestAppDelegate.m file as follows:

#import "VariableTestAppDelegate.h"
#import "MyClass.h"

@implementation VariableTestAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 MyClass *testObject = [[MyClass alloc] init];
 [testObject displayMessage:5];
 [testObject release];
}

@end

6. Choose File ➤ Save or press S to save your changes.

7. Click the Build and Run button, or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

8. Quit the program by clicking the Stop button or choosing Product ➤ Stop from

the Xcode pull-down menus.

9. Choose Run ➤ Console, or press R. You should see the printed statements

created by the NSLog command:

2010-09-10 13:18:06.994 VariableTest[622:a0f] Hello, world!
2010-09-10 13:18:06.997 VariableTest[622:a0f] The loop will repeat 5 times
2010-09-10 13:18:06.998 VariableTest[622:a0f] The value of i = 0
2010-09-10 13:18:06.999 VariableTest[622:a0f] The value of i = 1
2010-09-10 13:18:07.000 VariableTest[622:a0f] The value of i = 2

CHAPTER 12: Creating Classes and Objects 185

2010-09-10 13:18:07.000 VariableTest[622:a0f] The value of i = 3
2010-09-10 13:18:07.004 VariableTest[622:a0f] The value of i = 4

When the [testObject displayMessage:5]; line runs, it passes the value of 5, which

gets stored in the myLoop variable. The displayMessage method uses this myLoop variable

to determine how many times to run a loop. In this example, you’re passing the value of

5 to the displayMessage method, but if you change this value to another number, such

as 12, you would make the displayMessage run its loop 12 times.

Passing Multiple Parameters
In the previous example, you created a method that accepted a single parameter, an

integer value named myLoop. A method can actually accept multiple parameters if you

want. For each parameter that you want a function to accept, you just need to separate

them with a colon (:) like this:

-(void)methodName; // Zero parameters
-(void)methodName: (data type) variable1; // One parameter
-(void)methodName: (data type) variable1 name: (data type) variable2; // Two
parameters

To call and run a method, you must make sure you supply the method with the proper

type and number of parameters it expects:

[objectName methodName]; // Zero parameters
[objectName methodName: value]; // One parameter
[objectName methodName: value1 name: value2]; // Two parameters

Suppose you created a method that expects two parameters:

-(void)methodName: (int) aNumber name: (BOOL) aFlag;

To call and run this method, you must make sure you include an integer and a Boolean

value with the function name. First, you must list the integer value, and second you must

list the Boolean value:

[objectType methodName: 4 name: YES; // Valid
[objectType methodName: YES name: 4; // Invalid!!!
[objectType methodName: 4; // Invalid!!!

The second line is invalid because the method expects an integer first and a Boolean

value second. The third line is invalid because the method expects two parameters, but

the third line passes it only one parameter, a single integer.

Passing Objects as Parameters
When you pass data types such as numbers (int or float) or Boolean (BOOL) values as a

parameter, you need to create a variable to hold that data:

-(void)displayMessage: (int)myLoop;

However, many times you may need to pass an object, such as an NSString string.

When working with objects, you need a pointer, which you can identify using the

asterisk symbol:

CHAPTER 12: Creating Classes and Objects 186

-(void)displayMessage: (NSString *) myName;

This parameter tells the computer that the method expects an NSString object and to

use the myName variable as a pointer to that object.

To see how to use both multiple parameters and objects as parameters passed to a

method, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the MyClass.h file inside the Classes folder, and modify the code as follows:

#import <Cocoa/Cocoa.h>

@interface MyClass : NSObject {

@private

}

-(void)displayMessage: (NSString *) myName count:(int)myLoop;

@end

NOTE: If you have multiple parameters, you may not want to list them on a single line. Instead,
you can use a separate line for each parameter to make it more readable like this:

-(void)displayMessage: (NSString *) myName

 count:(int)myLoop;

3. Choose File ➤ Save or press S to save your changes.

4. Click the MyClass.m file inside the Classes folder, and add the displayMessage

method as follows:

#import "MyClass.h"

@implementation MyClass

- (id)init {
 if ((self = [super init])) {
 // Initialization code here.
 NSLog (@"Hello, world!");
 }

 return self;
}

- (void)dealloc {
 // Clean-up code here.

 [super dealloc];
}

CHAPTER 12: Creating Classes and Objects 187

-(void)displayMessage: (NSString *) myName count:(int)myLoop;
{
 NSLog (@"Hello, %@", myName);
 NSLog (@"The loop will repeat %i times", myLoop);
 int i;
 for (i = 0; i < myLoop; i++)
 {
 NSLog (@"The value of i = %i", i);
 }
}

@end

5. Choose File ➤ Save or press S to save your changes.

6. Click the VariableTestAppDelegate.m file stored in the Classes folder, and modify

the code in the VariableTestAppDelegate.m file as follows:

#import "VariableTestAppDelegate.h"
#import "MyClass.h"

@implementation VariableTestAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 MyClass *testObject = [[MyClass alloc] init];
 [testObject displayMessage: @"John Doe" count:5];
 [testObject release];
}

@end

7. Choose File ➤ Save or press S to save your changes.

8. Click the Build and Run button, or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

9. Quit the program by clicking the Stop button or choosing Product ➤ Stop from

the Xcode pull-down menus.

10. Choose Run ➤ Console, or press R. You should see the printed statements

created by the NSLog command:

2010-09-10 13:30:17.648 VariableTest[707:a0f] Hello, world!
2010-09-10 13:30:17.656 VariableTest[707:a0f] Hello, John Doe
2010-09-10 13:30:17.664 VariableTest[707:a0f] The loop will repeat 5 times
2010-09-10 13:30:17.665 VariableTest[707:a0f] The value of i = 0
2010-09-10 13:30:17.665 VariableTest[707:a0f] The value of i = 1
2010-09-10 13:30:17.666 VariableTest[707:a0f] The value of i = 2
2010-09-10 13:30:17.667 VariableTest[707:a0f] The value of i = 3
2010-09-10 13:30:17.668 VariableTest[707:a0f] The value of i = 4

Practice changing the number (5) and string (@"John Doe") passed as a parameter to the

displayMessage method to see how to change the displayMessage’s output.

CHAPTER 12: Creating Classes and Objects 188

Returning Values from a Method
A method can accept zero or more parameters to do something useful. In many cases,

the method simply runs its code, but sometimes you may need a method to calculate

and return a single value. When a method does not return a value, its data type is void:

-(void)displayMessage;

When that method returns a value, you need to identify the data type of that value:

-(int)displayMessage;
-(float)displayMessage;
-(NSString *)displayMessage;

A typical method that returns a value looks like this:

-(data type)methodName
{
 return value;
}

The data type defines what type of data the method returns, and the return command

specifies the exact value to return. When using a method that returns a value, your code

can simply treat that method as a value like this:

int myCounter;
myCounter = 2 + [objectName methodName];

To see how to create a simple method that returns a value, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the MyClass.h file inside the Classes folder, and modify the code as follows:

#import <Cocoa/Cocoa.h>

@interface MyClass : NSObject {

@private

}

-(void)displayMessage: (NSString *) myName count:(int)myLoop;
-(int)calculateValue;

@end

3. Click the MyClass.m file inside the Classes folder, and add the displayMessage

method as follows:

#import "MyClass.h"

@implementation MyClass

- (id)init {
 if ((self = [super init])) {
 // Initialization code here.
 NSLog (@"Hello, world!");

CHAPTER 12: Creating Classes and Objects 189

 }

 return self;
}

- (void)dealloc {
 // Clean-up code here.

 [super dealloc];
}

-(void)displayMessage: (NSString *) myName count:(int)myLoop
{
 NSLog (@"Hello, %@", myName);
 NSLog (@"The loop will repeat %i times", myLoop);
 int i;
 for (i = 0; i < myLoop; i++)
 {
 NSLog (@"The value of i = %i", i);
 }
}

-(int)calculateValue
{
 return 4;
}

@end

4. Choose File ➤ Save or press S to save your changes.

5. Click the VariableTestAppDelegate.m file stored in the Classes folder, and modify

the code in the VariableTestAppDelegate.m file as follows:

#import "VariableTestAppDelegate.h"
#import "MyClass.h"

@implementation VariableTestAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 MyClass *testObject = [[MyClass alloc] init];
 int tempVar;
 tempVar = [testObject calculateValue];
 [testObject displayMessage:@"John Doe" count: tempVar];
 [testObject release];
}

@end

6. Choose File ➤ Save or press S to save your changes.

7. Click the Build and Run button, or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

CHAPTER 12: Creating Classes and Objects 190

8. Quit the program by clicking the Stop button or choosing Product ➤ Stop from

the Xcode pull-down menus.

9. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-09-10 17:44:55.769 VariableTest[1167:a0f] Hello, world!
2010-09-10 17:44:55.774 VariableTest[1167:a0f] Hello, John Doe
2010-09-10 17:44:55.775 VariableTest[1167:a0f] The loop will repeat 4 times
2010-09-10 17:44:55.775 VariableTest[1167:a0f] The value of i = 0
2010-09-10 17:44:55.777 VariableTest[1167:a0f] The value of i = 1
2010-09-10 17:44:55.778 VariableTest[1167:a0f] The value of i = 2
2010-09-10 17:44:55.787 VariableTest[1167:a0f] The value of i = 3

The applicationDidFinishLaunching method declares an integer variable called

tempVar. Then it calls the calculateValue method inside testObject.

Peeking into the calculateValue method stored in the MyClass.m file, you can see that the

calculateValue method is declared as an integer data type, and inside its curly brackets

it uses the return command to return a value. In this case, the value is simply 4.

The value 4 replaces the code [testObject calculateValue] and gets assigned to the

tempVar variable. This tempVar variable now gets inserted into the [testObject
displayMessage:@"John Doe" count: tempVar]; line. Since tempVar represents the

number 4, this 4 gets passed to the displayMessage method, which uses it to run its loop

four times.

The calculateValue method always returns 4. To avoid returning the same value every

time, most methods will accept outside data to calculate a different value to return. To

see how to create a method that accepts a parameter and uses it to return a different

value, follow these steps:

1. Open the VariableTest project.

2. Click the MyClass.h file inside the Classes folder, and modify the code as follows:

#import <Cocoa/Cocoa.h>

@interface MyClass : NSObject {

@private

}

-(void)displayMessage: (NSString *) myName count:(int)myLoop;
-(int)calculateValue: (int)outsideData;
@end

3. Choose File ➤ Save or press S to save your changes.

4. Click the MyClass.m file inside the Classes folder, and add the displayMessage

method as follows:

#import "MyClass.h"

CHAPTER 12: Creating Classes and Objects 191

@implementation MyClass

- (id)init {
 if ((self = [super init])) {
 // Initialization code here.
 NSLog (@"Hello, world!");
 }

 return self;
}

- (void)dealloc {
 // Clean-up code here.

 [super dealloc];
}

-(void)displayMessage: (NSString *) myName count:(int)myLoop
{
 NSLog (@"Hello, %@", myName);
 NSLog (@"The loop will repeat %i times", myLoop);
 int i;
 for (i = 0; i < myLoop; i++)
 {
 NSLog (@"The value of i = %i", i);
 }
}

-(int)calculateValue: (int)outsideData
{
 int hold;
 hold = outsideData + outsideData;
 return hold;
}

@end

5. Choose File ➤ Save or press S to save your changes.

6. Click the VariableTestAppDelegate.m file stored in the Classes folder, and modify

the code in the VariableTestAppDelegate.m file as follows:

#import "VariableTestAppDelegate.h"
#import "MyClass.h"

@implementation VariableTestAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 MyClass *testObject = [[MyClass alloc] init];
 int tempVar;
 tempVar = [testObject calculateValue:1];
 [testObject displayMessage:@"John Doe" count: tempVar];
 [testObject release];
}

CHAPTER 12: Creating Classes and Objects 192

@end

7. Choose File ➤ Save or press S to save your changes.

8. Click the Build and Run button, or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

9. Quit the program by clicking the Stop button or choosing Product ➤ Stop from

the Xcode pull-down menus.

10. Choose Run ➤ Console, or press R7. You should see the printed statements

created by the NSLog command:

2010-09-10 19:45:23.746 VariableTest[1405:a0f] Hello, world!
2010-09-10 19:45:23.749 VariableTest[1405:a0f] Hello, John Doe
2010-09-10 19:45:23.750 VariableTest[1405:a0f] The loop will repeat 2 times
2010-09-10 19:45:23.751 VariableTest[1405:a0f] The value of i = 0
2010-09-10 19:45:23.751 VariableTest[1405:a0f] The value of i = 1

The applicationDidFinishLaunching method now calls the calculateValue method by

passing it 1 as a parameter.

The calculateValue method in the MyClass.m file stores this number in a variable called

outsideData. Then it creates an integer variable called hold, adds the value of

outsideData to itself, and stores this value into the hold variable. Finally, it returns the

hold variable to the [testObject calculateValue:1] line inside the

applicationDidFinishLaunching method.

The tempVar variable now contains the value returned by the calculateValue method

(which is now 2) and passes that value to the displayMessage method, which runs its

loop two times.

Passing by Reference
Normally when you pass data to a method, that method can’t change the value of that

passed data. This is called passing by value, which essentially makes a separate copy of

data and then lets the method manipulate that copy of the data, leaving the original data

untouched. If you want a method to change and return more than one value, you have to

pass data to a method through something called passing by reference.

Passing by reference relies on pointers. A pointer simply points or identifies a memory

address that contains data. When you send data to a method through passing by

reference, you’re sending the method the pointer to data. This means that when the

method alters that data, it’s altering the only copy of that data. The end result is that the

method can change the value of data that other parts of the program can then use.

To pass data by reference, you must use the asterisk symbol to identify a pointer in your

method:

-(data type)methodName: (data type *) pointerName;

CHAPTER 12: Creating Classes and Objects 193

In the implementation (.m) file, you must always use the asterisk symbol to identify the

parameter as a pointer:

 -(data type)methodName: (data type *) pointerName
{
 return *pointerName + *pointerName;
}

When calling a method that passes data by reference, place the ampersand (&) symbol

in front of the passed data:

[testObject methodName: &passedData];

NOTE: You only need to use the ampersand (&) symbol when passing data such as a number.

You can omit the ampersand (&) symbol if you’re passing a pointer.

To see how to pass data by reference and how that allows a method to change a value

used by other parts of the program, follow these steps:

1. Open the VariableTest project.

2. Click the MyClass.h file inside the Classes folder, and modify the code as follows:

#import <Cocoa/Cocoa.h>

@interface MyClass : NSObject {

@private

}

-(void)displayMessage: (NSString *) myName count:(int)myLoop;
-(int)calculateValue: (int *)outsideData;
@end

3. Choose File ➤ Save or press S to save your changes.

4. Click the MyClass.m file inside the Classes folder, and add the displayMessage

method as follows:

#import "MyClass.h"

@implementation MyClass

- (id)init {
 if ((self = [super init])) {
 // Initialization code here.
 NSLog (@"Hello, world!");
 }

 return self;
}

- (void)dealloc {
 // Clean-up code here.

CHAPTER 12: Creating Classes and Objects 194

 [super dealloc];
}

-(void)displayMessage: (NSString *) myName count:(int)myLoop
{
 NSLog (@"Hello, %@", myName);
 NSLog (@"The loop will repeat %i times", myLoop);
 int i;
 for (i = 0; i < myLoop; i++)
 {
 NSLog (@"The value of i = %i", i);
 }
}

-(int)calculateValue: (int *)outsideData
{
 int hold;
 hold = *outsideData + *outsideData;
 *outsideData = 99;
 return hold;
}

@end

5. Choose File ➤ Save or press S to save your changes.

6. Click the VariableTestAppDelegate.m file stored in the Classes folder, and modify

the code in the VariableTestAppDelegate.m file as follows:

#import "VariableTestAppDelegate.h"
#import "MyClass.h"

@implementation VariableTestAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 MyClass *testObject = [[MyClass alloc] init];
 int counter = 1;
 NSLog (@"The value of counter = %i", counter);
 int tempVar;
 tempVar = [testObject calculateValue:&counter];
 NSLog (@"Now the value of counter = %i", counter);
 [testObject displayMessage:@"John Doe" count: tempVar];
 [testObject release];
}

@end

7. Choose File ➤ Save or press S to save your changes.

8. Click the Build and Run button, or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

CHAPTER 12: Creating Classes and Objects 195

9. Quit the program by clicking the Stop button or choosing Product ➤ Stop from

the Xcode pull-down menus.

10. Choose Run ➤ Console, or press R. You should see the printed statements

created by the NSLog command:

2010-09-10 21:33:44.345 VariableTest[1690:a0f] Hello, world!
2010-09-10 21:33:44.371 VariableTest[1690:a0f] The value of counter = 1
2010-09-10 21:33:44.385 VariableTest[1690:a0f] Now the value of counter = 99
2010-09-10 21:33:44.386 VariableTest[1690:a0f] Hello, John Doe
2010-09-10 21:33:44.388 VariableTest[1690:a0f] The loop will repeat 2 times
2010-09-10 21:33:44.389 VariableTest[1690:a0f] The value of i = 0
2010-09-10 21:33:44.390 VariableTest[1690:a0f] The value of i = 1

In the applicationDidFinishLaunching method, the counter variable gets passed by

reference to the calculateValue method, which reassigns the value of its parameter

(called *outsideData) to the value 99. Now when the applicationDidFinishLaunching
method prints the value of the counter variable again, its value has changed from 1 to 99.

Creating Class Properties
A class represents a self-contained arbitrary object. If you were writing a program to

control an airplane, you might divide that program into objects where one object

represents the wings, another object represents the tail, and a third object represents

the engines. To do something useful, objects need methods. To store important data,

objects also need properties.

A property is nothing more than a variable that an object uses to hold information sent to

it (from another object) or that it can send to other objects. For example, an object

representing an airplane’s engine might need to receive data from the pilot, telling it to

increase or decrease thrust. Likewise, this engine object might also need to send fuel

information to the pilot. Properties simply give objects the ability to accept and store

information sent to it and create and send information, as shown in Figure 12–4.

 Figure 12–4. Properties allow an object to send and receive information.

CHAPTER 12: Creating Classes and Objects 196

To define a property in a class, you need to do the following:

1. Declare a variable in the header (.h) file.

2. Create a property from the declared variable in the header (*.h) file.

3. Create accessor methods for that property in the implementation (.m) file, which

allows the property to store data.

Defining Properties
The header file of a class is where you declare variable and make it a property. Declaring

a variable is straightforward. Underneath the @private heading in the header file, just

declare your variable normally:

@private
 datatype variableName;
 classType *pointerName;

Next, you need to define your declared variables as properties, which other parts of your

program can access. To do this, you simply use the @property (assign) or @property
(retain) command such as:

@property (assign) datatype variableName;
@property (retain) classType *pointerName;

When working with data types such as numbers (int or float) or Boolean values (BOOL),

you use the @property (assign) command. When declaring an instance of a class to

create an object, you use @property (retain). The retain command tells the computer

to retain the object in memory, which you don’t need to do when declaring integer or

Boolean variables.

NOTE: In addition to the @property (retain) command, you can also use the @property

(assign) or @property (copy) commands with objects. The @property (assign)
command is used with objects when you need to keep track of memory, such as when writing
iPhone/iPad apps. The @property (copy) command is used when working with objects that

are mutable, such as NSMutableString.

Next, you need to create accessor methods in the implementation (.m) file for each

property you declare. The accessor methods simply let other objects store or retrieve

information in your defined property.

In other object-oriented programming languages, you must physically write these

accessor methods yourself. In Objective-C, you can create these accessor methods

automatically by simply using the @synthesize command for each property like this:

@synthesize variableName
@synthesize pointerName;

CHAPTER 12: Creating Classes and Objects 197

NOTE: When using the @synthesize command, you do not need to use the asterisk (*) symbol

to identify pointers.

Accessing and Getting Values in Properties
After you’ve created a property in a class file, you can create an instance of that class

(an object) like this:

classType *objectName;

To assign a value to an object’s property, there are two methods. First, you can use the

traditional Objective-C technique that uses square brackets like this:

[objectName setPropertyName: value];

A second way to assign a value to an object’s property uses something called dot
syntax, which is what many other object-oriented programming languages use. The dot

syntax version of assigning a value to a property looks like this:

objectName.propertyName = value;

Both methods are equivalent, so use whichever method you prefer. Dot syntax is

simpler, and most of Apple’s sample code and documentation uses dot syntax.

NOTE: One key difference between the two methods is that when using the first method with
square brackets, the first letter of the property name is uppercase, while in the dot syntax

method, the first letter of the property name is lowercase.

To retrieve a value from an object’s property, you also have two methods. The first

method looks like this:

variable = [objectName propertyName];

The dot syntax method looks similar:

variable = objectName.propertyName;

To see how to create and use properties, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the MyClass.h file inside the Classes folder, and modify the code as follows:

#import <Cocoa/Cocoa.h>

@interface MyClass : NSObject {

@private
 NSString *personName;
 int loopVar;

CHAPTER 12: Creating Classes and Objects 198

}

@property (retain) NSString *personName;
@property (assign) int loopVar;

-(void)displayMessage: (NSString *) myName count:(int)myLoop;
-(int)calculateValue: (int *)outsideData;

@end

3. Choose File ➤ Save or press S to save your changes.

4. Click the MyClass.m file inside the Classes folder, and add the displayMessage

method as follows:

#import "MyClass.h"

@implementation MyClass

@synthesize personName;
@synthesize loopVar;

- (id)init {
 if ((self = [super init])) {
 // Initialization code here.
 NSLog (@"Hello, world!");
 }

 return self;
}

- (void)dealloc {
 // Clean-up code here.

 [super dealloc];
}

-(void)displayMessage: (NSString *) myName count:(int)myLoop;
{
 NSLog (@"Hello, %@", myName);
 NSLog (@"The loop will repeat %i times", myLoop);
 int i;
 for (i = 0; i < myLoop; i++)
 {
 NSLog (@"The value of i = %i", i);
 }
}

-(int)calculateValue: (int *)outsideData
{
 int hold;
 hold = *outsideData + *outsideData;
 *outsideData = 99;
 return hold;
}

@end

CHAPTER 12: Creating Classes and Objects 199

5. Choose File ➤ Save or press S to save your changes.

6. Click the VariableTestAppDelegate.m file stored in the Classes folder, and modify

the code in the VariableTestAppDelegate.m file as follows:

#import "VariableTestAppDelegate.h"
#import "MyClass.h"

@implementation VariableTestAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 MyClass *testObject = [[MyClass alloc] init];
 testObject.personName = @"John Smith";
 testObject.loopVar = 2;
 //[testObject setPersonName: @"John Smith"];
 //[testObject setLoopVar: 2];
 int repeatLoop;
 repeatLoop = testObject.loopVar;
 [testObject displayMessage:testObject.personName count: repeatLoop];
 [testObject release];
}

@end

The previous code lists the two methods for assigning values to a property. The dot

syntax version is used, while the square bracket version is commented out. If you want,

you can comment out the dot syntax version and remove the comment symbols (//)

from the square bracket version to see that they work identically.

7. Choose File ➤ Save or press S to save your changes.

8. Click the Build and Run button, or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

9. Quit the program by clicking the Stop button or choosing Product ➤ Stop from

the Xcode pull-down menus.

10. Choose Run ➤ Console, or press R. You should see the printed statements

created by the NSLog command:

2010-09-11 11:39:24.448 VariableTest[2858:a0f] Hello, world!
2010-09-11 11:39:24.455 VariableTest[2858:a0f] Hello, John Smith
2010-09-11 11:39:24.458 VariableTest[2858:a0f] The loop will repeat 2 times
2010-09-11 11:39:24.460 VariableTest[2858:a0f] The value of i = 0
2010-09-11 11:39:24.462 VariableTest[2858:a0f] The value of i = 1

In the applicationDidFinishLaunching method, the code declares an integer variable

called repeatLoop. Then it assigns the value of testObject.loopVar to this repeatLoop

variable, which is then passed as a parameter to the displayMessage method. Another

way to assign a value to the repeat Loop variable would be like this:

repeatLoop = [testObject loopVar];

CHAPTER 12: Creating Classes and Objects 200

Summary
You use Objective-C to create a class, which is divided into two files: the header (.h) file

and the implementation (.m) file. After you’ve created a class, you can create an instance

of that class, which is an object.

Classes need to define methods and properties. A method consists of a data type,

method name, and parameter list. The data type of a method determines what type of

data the method returns. If a method doesn’t return any data, its data type is void:

-(void) methodName;

If the method returns a data type, just list that data type in the parentheses like this:

-(float) methodName;

If the method returns an object type, you must use the asterisk symbol to define a

pointer like this:

-(NSString *) methodName;

If you need to pass data to a method, the method declaration needs to define the data

type for that data and a variable name to hold that data. Separate multiple parameters

with a colon like this:

-(void) methodName: (datatype) variableName1: name (datatype) variableName2;

To pass data to a method, you must send the correct data type and the correct number

of values defined by the parameter list. So if the method expects two integer values, you

can call that method like this:

[objectName methodName: 4 name: 98];

Methods can also change the values of their parameters through passing by reference.

When you want to change a value of a parameter, you must define the method with the

asterisk symbol to define a pointer like this:

-(void) methodName: (datatype *) variableName;

When you call that method and pass it a parameter, you must identify that parameter

with the ampersand (&) symbol like this:

[objectName methodName: &variable];

If you pass a pointer as a parameter, you can omit the ampersand (&) symbol.

To create properties, you must declare a variable and define it as a property in the

header (.h) file of the class. When creating properties from data types like integer or

Boolean, you use the @property (assign) command. When creating properties from

classes like NSString, you use the @property (retain) command.

After declaring your properties in the header (.h) file, the final step is to use the

@synthesize command in the implementation (.m) file so you can save and retrieve data

from that property.

CHAPTER 12: Creating Classes and Objects 201

To assign or retrieve values from properties, you can use the square bracket technique

or the dot syntax technique. Storing a value in a property through both techniques looks

like this:

[objectName setPropertyName: value];
objectName.propertyName = value;

To retrieve data from a property, you can use the square bracket or dot syntax

technique like this:

Variable = [objectName propertyName];
Variable = objectName.propertyName;

An object’s properties let it accept data from other parts of the program or create data

that other parts of the program may need. Methods make the object do something

useful. By understanding how to create objects from class files and how to create and

use properties and methods, you’ll be able to create your own objects and understand

how to use Apple’s prewritten and tested classes stored in the Cocoa framework.

CHAPTER 12: Creating Classes and Objects 202

203

203

 Chapter

Inheritance, Method
Overriding, and Events
In the previous chapter, you learned how to create classes and use them to create

objects. By using encapsulation to define a class with its own properties and methods,

objects can isolate the details of their code from the rest of a program.

Although encapsulation helps improve program reliability, both inheritance and method

overriding allow you to reuse existing objects to create more sophisticated programs

faster and easier than before. When creating a Mac program, you’ll be using the classes

stored in the Cocoa framework to give your program the typical functionality of a Mac

program without requiring you to write any code at all.

Inheritance lets you reuse an existing object and modify it. Method overriding lets you

reuse the same method name but just alter the code that makes the method actually

work. Together with encapsulation, inheritance and method overriding let you create

more reliable software with less work.

Object Inheritance
The entire Cocoa framework is based on classes that inherit methods and properties

from other classes. When you create your own classes, you can base your new class on

an existing class to gain the functionality you want without writing the code to get it.

Over time, there’s a good chance you’ll create a particularly useful class that you’ll want

to reuse in another program. Rather than copying it and then modifying the copy of the

class, it’s better just to inherit the properties and methods from that class.

You’ve actually been using inheritance every time you create a new class. If you look

carefully, the @interface portion of the class header (.h) file defines the class that you’re

inheriting from, such as NSObject like this:

@interface MyClass : NSObject

13

CHAPTER 13: Inheritance, Method Overriding, and Events 204

This line simply says that MyClass inherits from NSObject, which is the basic class that

every class is based on. If you want a class to inherit from a class that you created, you

need to do the following:

#import "OldClass.h"

@interface MyClass : OldClass

This first line tells the computer to import and make accessible all the code stored in the

OldClass.h file. The second line tells the computer that MyClass inherits all the properties

and methods stored in the OldClass files (OldClass.h and OldClass.m).

To see how inheritance can work, follow these steps:

1. Open the VariableTest project from the previous chapter.

2. Click the MyClass.h file inside the Classes folder, and modify the code as follows:

#import <Cocoa/Cocoa.h>

@interface MyClass : NSObject {

@private
 int position;
 NSString *name;

}

@property (assign) int position;
@property (retain) NSString *name;

-(int)changePosition: (int)myPosition;

@end

3. Choose File ➤ Save or press S to save your changes.

4. Click the MyClass.m file inside the Classes folder, and modify the code as follows:

#import "MyClass.h"

@implementation MyClass

@synthesize position;
@synthesize name;

- (id)init {
 if ((self = [super init])) {
 // Initialization code here.

 }

 return self;
}

- (void)dealloc {
 // Clean-up code here.
 [name release];

CHAPTER 13: Inheritance, Method Overriding, and Events 205

 [super dealloc];
}

-(int)changePosition: (int)myPosition
{
 int newPosition;
 newPosition = self.position + myPosition;
 return newPosition;
}

@end

The changePosition method takes its own property (position) and adds it to the

myPosition variable. Normally when you need to use an object’s property, you must

state the object’s name, but since the object is manipulating its own property, you can

just replace its name with self instead.

5. Choose File ➤ Save or press S to save your changes.

6. Click the VariableTestAppDelegate.m file stored inside the Classes folder, and

modify the code in the VariableTestAppDelegate.m file as follows:

#import "VariableTestAppDelegate.h"
#import "MyClass.h"

@implementation VariableTestAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 MyClass *testObject = [[MyClass alloc] init];
 testObject.position = 45;
 NSLog (@"The object's current position = %i", testObject.position);
 testObject.position = [testObject changePosition:10];
 NSLog (@"The new object position = %i", testObject.position);
 [testObject release];
}

@end

The applicationDidFinishLoading method creates an object called testObject, sets its

property (position) to 45, prints out this position property, calls the changePosition

method, and assigns the changePosition method’s result to the position property,

which gets printed again so you can see the result.

7. Choose File ➤ Save or press S to save your changes.

8. Click the Build and Run button, or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

9. Quit the program by clicking the Stop button or choosing Product ➤ Stop from

the Xcode pull-down menus.

10. Choose Run ➤ Console, or press R. You should see the printed statements

created by the NSLog command:

CHAPTER 13: Inheritance, Method Overriding, and Events 206

2010-09-11 21:30:26.157 VariableTest[4567:a0f] The object's current position = 45
2010-09-11 21:30:26.160 VariableTest[4567:a0f] The new object position = 55

The output to the Log window verifies that the testObject’s property (position) and

method (changePosition) is working. The changePosition method simply accepts a

value, adds 10 to it, and returns this sum.

Once you’ve tested to make sure your object is working correctly, the next step is to

create a new object, inherit properties and methods from MyClass, and use the new,

inherited class to verify that it works, which you can do by following these steps:

1. Open the VariableTest project from the previous section.

2. Choose File ➤ New File. A template dialog box appears.

3. Click Cocoa under Mac OS X in the left pane of the template dialog box.

4. Click the Objective-C class icon, and click the Next button. A Save As dialog box

appears.

5. Choose the Classes folder in the Group pop-up menu, and type NewClass for

your class name. Then click the Save button. The NewClass.h and NewClass.m files

appear in your Classes folder.

6. Click the NewClass.h file, and modify the code as follows:

#import <Cocoa/Cocoa.h>
#import "MyClass.h"

@interface NewClass : MyClass {
@private

}

@end

The two main changes you need to make in the NewClass.h file are to add the #import
"MyClass.h" line and define NewClass to inherit from MyClass through the @interface
NewClass : MyClass line.

7. Choose File ➤ Save or press S to save your changes.

8. Click the VariableTestAppDelegate.m file, and modify the code as follows:

#import "VariableTestAppDelegate.h"
#import "MyClass.h"
#import "NewClass.h"

@implementation VariableTestAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 MyClass *testObject = [[MyClass alloc] init];
 testObject.position = 45;
 NSLog (@"The object's current position = %i", testObject.position);

CHAPTER 13: Inheritance, Method Overriding, and Events 207

 testObject.position = [testObject changePosition:10];
 NSLog (@"The new object position = %i", testObject.position);
 [testObject release];
 NewClass *newObject = [[NewClass alloc] init];
 newObject.position = 32;
 NSLog (@"The object's current position = %i", newObject.position);
 newObject.position = [newObject changePosition:10];
 NSLog (@"The new object position = %i", newObject.position);
 [newObject release];
}

@end

To make the VariableTestAppDelegate.m file capable of accessing the code stored in

the NewClass.h file, you must import it using the #import "NewClass.h" line. The last five

lines in the applicationDidFinishLaunching method create a newObject, based on

NewClass. At this point, the NewClass file does not contain any code since it inherits all its

code from the MyClass file.

To verify that NewClass really does inherit its code from the MyClass file, this code then

assigns the value 32 into the position property of newObject, which it then prints out.

Next, it runs the moveMe method using a value of 10. The result of this moveMe method

gets stored in the position property of newObject, which then gets printed again to show

how it changed.

9. Choose File ➤ Save or press S to save your changes.

10. Click the Build and Run button, or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

11. Quit the program by clicking the Stop button or choosing Product ➤ Stop from

the Xcode pull-down menus.

12. Choose Run ➤ Console, or press R. You should see the printed statements

created by the NSLog command:

2010-09-11 23:03:18.721 VariableTest[4776:a0f] The object's current position = 45
2010-09-11 23:03:18.724 VariableTest[4776:a0f] The new object position = 55
2010-09-11 23:03:18.721 VariableTest[4776:a0f] The object's current position = 32
2010-09-11 23:03:18.724 VariableTest[4776:a0f] The new object position = 42

Even though the NewsClass file does not contain the position property or the

changePosition method, the property and method still work because they’re defined in

the MyClass file, which is where the NewClass file inherited it.

Method Overriding
When you create a class with its own properties and methods, you took advantage of

encapsulation, which is one of the main features of object-oriented programming. The

second main feature is inheritance, where one object can inherit the properties and

methods of another object without physically duplicating its code.

CHAPTER 13: Inheritance, Method Overriding, and Events 208

The third feature of object-oriented programming is method overriding, where two

objects can have identically named methods that can work differently from one another.

To use method overriding, you simply create a new class that inherits from an existing class. In

this new class, you create a method that’s identically named as a method in the other class.

To see how method overriding works, follow these steps:

1. Open the VariableTest project from the previous section.

2. Click the NewClass.h file, and modify the code as follows:

#import <Cocoa/Cocoa.h>
#import "MyClass.h"

@interface NewClass : MyClass {
@private

}

-(int)changePosition: (int)myPosition;

@end

All you’re doing in this code is declaring a moveMe method that’s identical to the moveMe

method stored in the MyClass file.

3. Choose File ➤ Save or press S to save your changes.

4. Click the NewClass.m file, and modify the code as follows:

#import "NewClass.h"

@implementation NewClass

- (id)init {
 if ((self = [super init])) {
 // Initialization code here.
 }

 return self;
}

- (void)dealloc {
 // Clean-up code here.

 [super dealloc];
}

-(int)changePosition: (int)myPosition
{
 int newPosition;
 newPosition = self.position * myPosition;
 return newPosition;
}

@end

CHAPTER 13: Inheritance, Method Overriding, and Events 209

This code redefines how the changePosition method works. In the MyClass file, the

changePosition method adds self.position + myPosition. In this moveMe method, it

multiples self.position * myPosition.

5. Choose File ➤ Save or press S to save your changes.

6. Click the Build and Run button, or choose Build ➤ Build and Run. As long as you

didn’t mistype anything, you should see a blank window pop up.

7. Quit the program by clicking the Stop button or choosing Product ➤ Stop from

the Xcode pull-down menus.

8. Choose Run ➤ Console, or press R. You should see the printed statements

created by the NSLog command:

2010-09-11 23:03:18.721 VariableTest[4776:a0f] The object's current position = 45
2010-09-11 23:03:18.724 VariableTest[4776:a0f] The new object position = 55
2010-09-11 23:03:18.726 VariableTest[4776:a0f] The object's current position = 32
2010-09-11 23:03:18.727 VariableTest[4776:a0f] The new object position = 320

Even though both the testObject (based on MyClass) and newObject (based on

NewClass) use identical method names, method overriding lets you use the same method

name in multiple objects.

Responding to Events
Without writing a single line of code, you can create a Mac program that knows how to

display pull-down menus and windows. If you move or resize the window, it behaves

exactly like a typical Mac program. However, most parts of your user interface also have

a list of predefined events that they can recognize.

In most cases, you can ignore all or most of these events and just let your program

behave in its default mode. However, sometimes you may want to respond to certain

types of events. To do this, you can create a method to respond to that specific event

and store that method in another object. One common type of object that handles

different events is called a delegate.

For example, the sample program you’ve been modifying throughout this book has a

method called applicationDidFinishLaunching, which runs every time your program

successfully starts. This applicationDidFinishLaunching method is automatically

included in a file called AppDelegate. (The name of your project gets added to the front

of this file name, so if you named your project MyTest, the complete name of the file

would be MyTestAppDelegate.)

A delegate is simply a class (consisting of a header and an implementation file) that

contains methods for handling a list of predefined events for a specific part of your

program. Every time you create a basic Mac program, Xcode automatically creates an

AppDelegate file, which is a delegate object for handling events related to your entire

application, which is why it’s called AppDelegate.

CHAPTER 13: Inheritance, Method Overriding, and Events 210

Understanding the Application Delegate
Every program is based on a class called NSApplication. This class contains all the

code needed to make your program behave like a typical Mac program without you

having to write a single line of code.

To respond to different events related to your application, your application relies on a file

called AppDelegate. This AppDelegate file is where you’ll create and store your methods

for responding to different events related to the application.

To find the different types of events that an application can recognize, follow these

steps:

1. Choose Help ➤ Developer Documentation. A window appears.

2. Click in the Search field in the upper-right corner, type NSApplicationDelegate,

and press Return. A list of help topics related to your search query appears in the

left pane of the Organizer window.

3. Click the NSApplicationDelegate Protocol topic. A help screen for the

NSApplicationDelegate Protocol Reference appears, as shown in Figure 13–1.

Figure 13–1. The NSApplicationDelegate Protocol Reference help screen

CHAPTER 13: Inheritance, Method Overriding, and Events 211

4. Scroll down this NSApplicationDelegate Protocol Reference screen until you find

the list of events, under the Tasks category heading, that your application can

respond to, as shown in Figure 13–2.

Figure 13–2. Your new class files appear in your selected folder.

By identifying a particular class, you can find the list of events that the object can

recognize. For the NSApplication class, which forms the basis for every Mac program

you create, the following are the different events that the application can recognize:

Launching Applications

 – applicationWillFinishLaunching:
 – applicationDidFinishLaunching:

Terminating Applications

 – applicationShouldTerminate:
 – applicationShouldTerminateAfterLastWindowClosed:
 – applicationWillTerminate:

Managing Active Status

 – applicationWillBecomeActive:
 – applicationDidBecomeActive:
 – applicationWillResignActive:
 – applicationDidResignActive:

CHAPTER 13: Inheritance, Method Overriding, and Events 212

Hiding Applications

 – applicationWillHide:
 – applicationDidHide:
 – applicationWillUnhide:
 – applicationDidUnhide:

Managing Windows

 – applicationWillUpdate:
 – applicationDidUpdate:
 – applicationShouldHandleReopen:hasVisibleWindows:

Managing the Dock Menu

 – applicationDockMenu:

Displaying Errors

 – application:willPresentError:

Managing the Screen

 – applicationDidChangeScreenParameters:

Opening Files

 – application:openFile:
 – application:openFileWithoutUI:
 – application:openTempFile:
 – application:openFiles:
 – applicationOpenUntitledFile:
 – applicationShouldOpenUntitledFile:

Printing

 – application:printFile:
 – application:printFiles:withSettings:showPrintPanels:

You’ll never need to recognize all of these possible events, but you may need to

recognize some of them for your particular program. If you study these different types of

events, you’ll notice that they are in three categories: events that will happen, events

that did happen, or events that are happening right now.

 If you respond to an event that includes will in its name, then your

code will run before the event actually occurs.

 If you respond to an event that includes did in its name, then your

code will run after the event actually occurs.

 If you respond to an event that does not include the words did or will,

then your code runs as the particular event occurs.

To see how some of these events can work, follow these steps:

1. Open the VariableTest project from the previous chapter.

2. Click the VariableTestAppDelegate.m file in the Classes folder. The middle pane

of the Xcode window displays your VariableTestAppDelegate.m code.

CHAPTER 13: Inheritance, Method Overriding, and Events 213

3. Modify the VariableTestAppDelegate.m file as follows:

#import "VariableTestAppDelegate.h"
#import "MyClass.h"

@implementation VariableTestAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 NSLog(@"applicationDidFinishLaunching");
}

-(void)applicationDidBecomeActive:(NSNotification *)aNotification {
 NSLog (@"applicationDidBecomeActive");
}

-(void)applicationWillTerminate:(NSNotification *)aNotification {
 NSLog (@"applicationWillTerminate");
}

@end

4. Choose File ➤ Save or press S to save your changes.

5. Click the Run button, or choose Product ➤ Run. As long as you didn’t mistype

anything, you should see a blank window pop up.

6. Click another program that’s running, or click the desktop to make your program

inactive.

7. Quit the program by choosing the VariableTest ➤ Quit command or pressing Q.

8. Choose Run ➤ Console, or press R. You should see the printed statements

created by the NSLog command:

2010-09-11 18:04:18.424 VariableTest[3850:a0f] applicationDidFinishLaunching
2010-09-11 18:04:18.434 VariableTest[3850:a0f] applicationDidBecomeActive
2010-09-11 18:04:25.574 VariableTest[3850:a0f] applicationDidBecomeActive
2010-09-11 18:04:29.344 VariableTest[3850:a0f] applicationWillTerminate

When you ran your program, this what happened:

1. Your program ran and immediately launched the applicationDidFinishLaunching

method inside the VariableTestAppDelegate.m file.

2. Your program’s window appeared on the screen, which triggered the

applicationDidBecomeActive method.

3. When you made another program active and then switched back to your program,

the applicationDidBecomeActive method ran a second time.

4. When you quit your program, the applicationWillTerminate method ran.

CHAPTER 13: Inheritance, Method Overriding, and Events 214

As you can see, your application can respond to a variety of different events, but it’s up

to you to create methods to respond to those events by writing Objective-C code in the

AppDelegate file.

Summary
Object-oriented programming allows encapsulation, inheritance, and method overriding.

Encapsulation isolates code from the rest of your program, making it easier to build a

large program out of smaller parts. Inheritance lets you reuse code without physically

copying it. Method overriding lets you write different code for identically named methods

stored in different objects.

By using classes from the Cocoa framework, you’re already using classes that inherit

from other classes. If you create a class and want to inherit code from that class, you

need to follow two steps. First, you need to use the #import command to import all the

code from the class that you want to inherit from. Second, you need to define your new

class as being based on another class like this:

#import "OldClass.h"

@interface NewClass : OldClass

To override a method, you just need to define an identically named method in a different

class. When you call that message, you must also identify the object name so the

computer knows which method to use and where that method is stored.

Finally, as you develop your programs, you’ll find that parts of your user interface

already know how to respond to different types of events that can occur. Normally you

can ignore these events, but if you want to respond to them for a particular reason, you

need to write a method with code that tells your program how to react when that

specific event occurs.

By understanding how to use encapsulation, inheritance, and method overriding to

create objects, you’ll better understand how objects can make up your user interface,

which you’ll learn about in the next part of this book.

Every user interface object, such as a button or text field, can also respond to different

types of events, which you may need to respond to through methods stored in a

delegate file for that user interface object.

In this first part of the book, you’ve gone from learning the basics to using Xcode and

Objective-C to learning how to write simple Objective-C programs that take advantage

of object-oriented features. In the next part of this book, you’ll learn how to tie your

Objective-C code to your user interface to make your programs truly look and act like

real Mac programs.

215

215

 Chapter

Creating a User Interface
Up until now, the sample programs you’ve created have simply printed data to the Log
window using the NSLog command. Although this can be fine for testing your program,
it’s definitely not how you want users to interact with your program.

If you’re creating a Mac program, users expect your program to behave just like a
regular Mac program by displaying pull-down menus at the top of the screen with
familiar menu titles such as File, Edit, View, and Help. Users also expect to interact with
your program through windows and dialog boxes that you can move, resize, and shrink
from the middle of the screen.

Within each window and dialog box, users expect to see buttons, check boxes, text
fields, sliders, and radio buttons that allow them to input data to your program and
display some sort of output in return.

In this chapter, you’ll learn about the basics behind a user interface and how to use the
various tools to create your own user interface.

Getting to Know Interface Builder
The portion of Xcode that lets you visually design your user interface is called Interface
Builder. In the old days, you had to write code to make your program work and then
write additional code to create your user interface. You can still do that if you want, but
it’s far simpler and more reliable to use Interface Builder to create your user interface.

When you write Objective-C code, you store it in class files that have the .h and .m file
extensions, which are usually stored in the Classes folder. When you create a user
interface, you store it in a file that has the .xib file extension, often called nib files
because they were once called NeXTSTEP Interface Builder files. Xcode typically stores
your user interface .xib files in the Resources folder, as shown in Figure 14–1.

14

CHAPTER 14: Creating a User Interface 216

Figure 14–1. The Resources folder contains your user interface .xib files.

Simple programs may have only one user interface, typically stored in the Resources
folder as the MainMenu.xib file. If your program needs to display different types of
interfaces, such as a video game that may need to display an actual game along with
various control panels for customizing the game, your program may need two or more
.xib files.

The basic idea behind using Interface Builder is to create and design your user interface,
which includes a window along with common user interface items such as buttons,
check boxes, and sliders.

Creating a New User Interface .xib File
When you create a new project, your project will likely create a MainMenu.xib file
automatically. If you created a project where this file doesn’t exist or if you need to add
additional user interface .xib files, follow these steps:

1. Choose File ➤ New File. A template dialog box appears.

2. Click User Interface under the Mac OS X category in the left pane. Different types

of user interface files appear in the right pane, as shown in Figure 14–2.

y

CHAPTER 14: Creating a User Interface 217

Figure 14–2. The template dialog box lets you choose the type of user interface file to create.

3. Click an icon that represents the type of user interface file you want to create. The

five choices are as follows:

 Application: Creates a complete user interface that provides pull-
down menus and a window

 Main Menu XIB: Creates a new pull-down menu bar

 Window XIB: Creates a new window

 View XIB: Creates a custom window for displaying items

 Empty XIB: Creates a bare-bones user interface

4. Click the Next button. A Save As dialog box appears, letting you choose a name

for your user interface file.

5. Type a descriptive name for your user interface .xib file.

CHAPTER 14: Creating a User Interface 218

6. Click the Finish button. Your new user interface files appears. You may want to

drag and drop this .xib file to another folder.

Understanding the Parts of a .XIB File
When you create a typical Mac program, Xcode automatically creates a MainMenu.xib
file that contains the bulk of your program’s user interface, which is represented as
icons that appear in the Interface Builder window, as shown in Figure 14–3.

Figure 14–3. Icons represent different parts of your .xib user interface file.

In Figure 14–3, a horizontal line divides the icons into two groups. The icons above the
horizontal line are known as placeholder objects. The icons underneath the vertical line
are known as interface objects.

CHAPTER 14: Creating a User Interface 219

Placeholder Objects
Placeholder objects represent items stored outside your user interface .xib file, which
work as a link between your Objective-C code and your user interface. The three
common placeholder objects include the following:

 File’s Owner: The File’s Owner icon defines which class file links to the
.xib user interface file. You can pair up only one class file at a time to
each .xib user interface file.

 First Responder: The First Responder icon defines how to handle any
actions that the user takes upon viewing the user interface displayed
by the .xib file.

 Application: The Application icon defines how your program behaves.
If you don’t customize the Application icon, your program will behave
by default like a regular Mac program.

When you’re learning to program using Xcode, you’ll probably never need to change the
options available in the File Owner’s, First Responder, or Application icon.

Interface Objects
Interface objects represent the different parts of the user interface stored in a specific
.xib file. The four common interface objects include the following:

 Main Menu: The Main Menu icon represents the pull-down menu that
appears at the top of the screen.

 Window: The Window icon represents the window that appears on the
screen.

 App Delegate: The App Delegate icon defines the class file that
contains the Objective-C code to respond to different types of events.
The App Delegate icon normally defines the ProgramNameAppDelegate
file, where ProgramName is your actual program name.

 Font Manager: The Font Manager icon defines the class that controls
the displayed fonts on the user interface. By default, this class is the
NSFontManager class.

In most cases, you’ll need only one Main Menu, App Delegate, and Font Manager icon.
However, you might have more than one Window icon. In addition, you can define
additional objects to interact with your user interface.

The Main Menu icon will let you edit the pull-down menus of your user interface. The
Window icon displays the window of your user interface, which is where you’ll drag and
drop different user interface objects such as buttons, text fields, and check boxes.

CHAPTER 14: Creating a User Interface 220

Out of all the placeholder and interface object icons displayed, you’ll spend most of your
time only using the Main Menu and Window icons and accepting the default values of
the rest of the other icons.

Toggling the View of Placeholder and Interface Objects
By default, your placeholder and interface object icons appear as icons (see Figure 14–3).
However, you can switch to a different view (List, Icons, or Columns) by choosing the
View menu or by clicking the View Mode icon, as shown in Figure 14–4.

Figure 14–4. The Toggle icon lets you expand or shrink the appearance of placeholder and interface objects.

Besides displaying each icon with its descriptive name, the List and Columns view lets
you view the parts that make up each icon, such as the individual menus that make up
the Main Menu icon. Just click the gray disclosure triangle that appears to the left of an
icon to view its additional parts, as shown in Figure 14–5.

CHAPTER 14: Creating a User Interface 221

Figure 14–5. The expanded view lets you see the parts that make up each icon.

Designing a User Interface
The design of your user interface typically appears through the Window icon, which
displays the actual window where you can place various user interface objects such as
buttons, text fields, and pictures.

The basic idea behind designing a user interface is to pick a user interface object and
drag it on the window of your .xib file. Then you may need to customize this object,
such as changing its position or size. Finally, you’ll need to link or connect some (but not
all) of your user interface objects to your Objective-C code, so that way your user
interface can respond to certain actions, such as the user clicking a button, and display
information on the screen.

To see how create a simple user interface, follow these steps:

1. Choose File ➤ Close Project to shut down any currently displayed projects on the

screen.

2. Choose File ➤ New Project. A template dialog box appears.

3. Click Application under Mac OS X in the left pane.

4. Click the Cocoa Application icon in the right pane, and click the Next button.

Another dialog box appears, asking for the name of your project.

5. Type any name, such as MyTest, and click the Next button. A Save As dialog box

appears.

CHAPTER 14: Creating a User Interface 222

6. Choose a folder to store your project, and click the Save button.

7. Click the disclosure triangle to the left of the Resources folder. The MainMenu.xib

file appears.

8. Click the MainMenu.xib file. The Interface Builder window appears.

9. Click the Window icon. Your user interface’s window appears on the screen, as

shown in Figure 14–6.

Figure 14–6. Clicking the Windows icon displays the window of your user interface.

10. Choose Tools ➤ Library. The Library window appears.

11. Click the Objects tab near the top of the Library window, as shown in Figure 14–7.

CHAPTER 14: Creating a User Interface 223

Figure 14–7. The Object Library window displays different user interface objects you can use.

12. Scroll down through the Object Library until you find the Push Button icon.

13. Drag and drop the Push Button object anywhere over your open window, as
shown in Figure 14–8.

CHAPTER 14: Creating a User Interface 224

Figure 14–8. Drag and drop user interface objects over the window to design a user interface.

14. Scroll through the Object Library until you find a Wrapping Text Field icon.

15. Drag and drop the Wrapping Text Field object on the window, as shown in Figure

14–9.

CHAPTER 14: Creating a User Interface 225

Figure 14–9. The Wrapping Text Field object displays a field where users can type text.

16. Choose File ➤ Save or press S to save your changes.

17. Switch to Xcode; click the Build and Run button, or choose Build ➤ Build and

Run. A blank window appears on the screen with the button you placed on the

window. Although you can click the button, it won’t do anything because you

haven’t written any Objective-C code to make it work yet.

18. Click in the Wrapping Text Field, and type bbrown (deliberately misspelling

brown.

19. Right-click the misspelled word to display a pop-up menu, and choose Spelling

and Grammar ➤ Show Spelling and Grammar. A dialog box appears, highlighting

your misspelled word and offering a possible correct spelling. Without writing a

single line of code, your program already includes a built-in spell-checker,

courtesy of Apple’s Cocoa framework.

CHAPTER 14: Creating a User Interface 226

20. Quit the program by clicking the Stop button or choosing Product ➤ Stop from

the Xcode pull-down menus.

Customizing User Interface Objects
By dragging and dropping objects on your user interface, you can design your
program’s appearance without writing a single line of code. However, placing objects on
your user interface is just a start since you’ll need to further customize each user
interface object to give it a descriptive name or to resize or precisely position objects.
Customizing the appearance of your user interface can make your program look nice for
your user.

Moving and Resizing User Interface Objects
When you drag and drop objects on your user interface, chances are good that those
objects won’t be the exact size and position you need them. To fix this, you may need to
move objects or resize them.

The simplest way to move an object is to drag it on the screen, and the simplest way to
resize an object is to click it to display handles around its edges and then drag one of its
handles. Although this can be fast and easy, it can also be imprecise.

To help you position an object in relation to any existing objects on the user interface,
Interface Builder displays guidelines that show you when objects appear aligned, as
shown in Figure 14–10.

Figure 14–10. Interface Builder displays guidelines to help you align objects on your user interface.

CHAPTER 14: Creating a User Interface 227

If you need to precisely align objects, you can specify the object’s position in relation to
the bottom-left corner of the user interface window. You can also precisely define an
object’s width and height.

To see how to move and resize an object, follow these steps:

1. Click the object you want to move or resize.

2. Choose Tools ➤ Size Inspector, or press 3. The Size window appears where

you can type in numbers to define the object’s position (relative to the bottom-left

corner of the user interface window, which is defined as the origin) and size, as

shown in Figure 14–11.

Figure 14–11. The Size window lets you define the position and size of an object.

Autosizing and Anchoring User Interface Objects
When you place an object on a user interface, it may look perfect—until the user actually
runs your program and resizes the window. Suddenly buttons and text fields can get
skewered out of proportion to one another or appear cut off, as shown in Figure 14–12.

CHAPTER 14: Creating a User Interface 228

Figure 14–12. Resizing a window can wreck the appearance of a user interface.

One option is to prevent the user from resizing the user interface window. However, a
better solution is to anchor and autosize your user interface objects so they adjust no
matter how the user resizes the user interface window.

Autosizing means that the object shrinks or grows in height and/or width as the window
shrinks or grows. Anchoring means that an edge of the object remains a fixed distance
from the side of the user interface window no matter how much the user may resize that
window. The combination of anchoring and autoresizing can make your user interface
adjust to any size that the user makes the user interface window.

To anchor and autosize an object, follow these steps:

1. Click the object you want to anchor to one or more sides of the user interface

window or autoresize.

2. Choose Tools ➤ Size Inspector, or press 3. The Size window appears,

displaying the Autoresizing box, as shown in Figure 14–13.

Figure 14–13. The Autoresizing box lets you define how an object anchors or autoresizes.

CHAPTER 14: Creating a User Interface 229

3. Click the vertical and/or horizontal autoresize arrow (inside the box) to define

whether the object can expand in height or width if the user resizes the user

interface window.

4. Click one or more anchor arrows (outside the box) to force the object to always

stay within a fixed distance from the top, bottom, left, or right edges of the user

interface window.

After you click the different anchor or autoresize arrows, the Example graphic to the
right visually shows you how your choices will make your object behave if the user
resizes the user interface window as long as you keep the mouse pointer over the
Autosizing box.

Summary
To create a user interface, you have to use Interface Builder, which lets you visually drag
and drop objects to create a user interface. A typical user interface consists of a single
.xib file that contains pull-down menus and a window. However, you can add as many
additional .xib files as necessary to create your program’s user interface.

After you drag and drop objects on your user interface, you need to customize the
appearance of each object by moving or resizing it. You can use the mouse to drag an
object to the right position on the window or to resize its height or width. For more
precision, you can choose View ➤ Utilities ➤ Size to open the Size window and type in a
specific value for an object’s width, height, or X and Y positions relative to the bottom-
left corner of the user interface window.

To make sure your user interface remains consistent no matter how the user resizes the
user interface window, you can anchor and autoresize each user interface object.
Anchoring forces an object to maintain a fixed distance from one or more edges of a
window. Autoresizing lets an object expand or shrink its height and/or width depending
on how the user expands or shrinks the user interface window.

The basic idea behind designing a user interface is to drag and drop objects on a
window, customize those user interface objects, and then connect them to your
Objective-C code, which is what you’ll learn to do in the next chapters in this part of the
book.

CHAPTER 14: Creating a User Interface 230

231

231

 Chapter

Choosing Commands with
Buttons
The user interface lets you communicate with a program. In the old days, you had to

type a command to make a program do something. If you didn’t know the command to

type or if you misspelled it, your command wouldn’t work, and the program wouldn’t

respond to your actions.

Fortunately, today’s programs use a graphical user interface (GUI) that displays options

on the screen for the user to select using the mouse or keyboard. For most programs,

the simplest way to offer options for the user to select involves using buttons.

A button typically appears on the screen as a rectangular object with a descriptive

command displayed inside such as the word Print or Cancel. However, buttons can

appear in different sizes, shapes, and colors, as shown in Figure 15–1, which you can

display by choosing Tools ➤ Library.

15

CHAPTER 15: Choosing Commands with Buttons 232

Figure 15–1. Some of the different types of buttons you can create

In this chapter, you’ll learn how to create and customize different buttons and connect

them to your Objective-C code to make them work.

Creating a Button
These are some of the more common types of buttons available for your user interface:

 Push Button

 Gradient Button

 Rounded Rect Button

 Rounded Textured Button

 Textured Button

 Recessed Button

 Disclosure Triangle

d

CHAPTER 15: Choosing Commands with Buttons 233

 Square Button

 Help Button

 Disclosure Button

 Round Button

 Bevel Button

All buttons work alike, but they just look different. The Push Button is the standard

button appearance for Mac programs, but you can just as easily replace it with a

Recessed Button or Square Button instead.

Some buttons, such as the Round Button, can’t display as much text as the Push

Button or Rounded Rect Button. Others types of buttons, such as the Help Button and

Disclosure Button, don’t display any text inside them at all, as shown in Figure 15–2.

 Figure 15–2. The appearance of different types of buttons

The basic idea behind all of these buttons is to provide the user with one-click access to

a single command. Generally, use buttons when you need to give the user a limited

number of options, such as two or three choices. If you display too many buttons on the

CHAPTER 15: Choosing Commands with Buttons 234

screen at once, you may just wind up confusing the user and making your user interface

look too cluttered.

There are two ways to create a button. First, you can scroll through the Object Library

window (see Figure 15–1), find the type of button you want such as a Bevel Button or

Round Button, and then drag and drop that button on your user interface.

Second, you can drag and drop any button on the user interface and then change it to

another button style by following these steps:

1. Click a button on your user interface that you want to change.

2. Choose Tools ➤ Attributes Inspector to display the Attributes Inspector.

3. Click the Bezel pop-up menu, and choose the button type you want, as shown in

Figure 15–3.

Figure 15–3. Clicking the Bezel pop-up menu lets you change a button’s appearance.

CHAPTER 15: Choosing Commands with Buttons 235

Creating a Button Title
Nearly all types of buttons (with the exception of Disclosure Triangles, Disclosure

Buttons, and Help Buttons) let you display a title inside the button. This title typically

displays the name of the command that the button represents such as Save, OK, or

Options.

There are two ways to create a title on a button. First, you can double-click the button

directly and, when the button’s title appears highlighted, type any text that you want to

appear on the button.

A second way is to open the Attributes window, which not only lets you type text into

the Title field to display text on a button but also lets you align text on a button as left-

justified, centered, justified, or right-justified, as shown in Figure 15–4.

Figure 15–4. The Attributes window lets you type and align text on a button.

The Alternate field is used to define text that appears on a button that toggles between

displaying the Title field text and the Alternate field text. Any text in the Alternate field

appears only if the button’s Type is set to Toggle.

The toggle feature can replace two separate buttons with a single button. For example,

you might have one button that displays Go and a second button that displays Stop.

Rather than clutter your user interface with two buttons, you could have one button that

initially displays Go, and after the user clicks it, the button changes its text to display

Stop. Of course, you’d have to write additional Objective-C code to make the button

behave differently when displaying different text, but toggling lets you eliminate the need

for two separate buttons.

CHAPTER 15: Choosing Commands with Buttons 236

To see how to display alternate text on a button, follow these steps:

1. Open the MyTest program you created in the previous chapter.

2. Double-click MainMenu.xib file inside the Resources folder to switch to Interface

Builder.

3. Click the Window icon in Interface Builder window. Your user interface appears.

4. Click the button that appears on the user interface. (If a button does not appear,

drag and drop a Push Button object on the window.)

5. Choose Tools ➤ Attributes Inspector. The Attributes Inspector appears.

6. Click the Type pop-up menu, and choose Toggle, as shown in Figure 15–5.

Figure 15–5. The Object Attributes window lets you type and align text on a button.

7. Click in the Title field, and replace the current text with new text such as On.

8. Click in the Alternate field, and type new text such as Off.

9. Choose File ➤ Save or press S to save your changes.

10. Switch to Xcode; click the Build and Run button, or choose Build ➤ Build and

Run. A blank window appears on the screen with the button you placed on the

window.

11. Click the On button on your user interface. Notice that it now toggles to display

Off, as shown in Figure 15–6.

CHAPTER 15: Choosing Commands with Buttons 237

Figure 15–6. A button that toggles can change its title when the user clicks it.

12. Click the Off button. Notice that it now reads On.

13. Quit the program by choosing MyTest ➤ Quit.

Adding a Graphic Image
Besides displaying a title, most buttons can also display a graphic image that appears

next to a button’s title or replaces it altogether. To add a graphic image, you need to use

the Image, Alternate, Position, and Scaling options in the Attributes Inspector, as shown

in Figure 15–7.

Figure 15–7. The Image, Alt. Image, Position, and Scaling options for displaying graphic images on a button.

The Image and Alternate pop-up menus let you choose from various icons commonly

found in Mac programs. Any images defined by the Alt Image pop-up menu appear only

if you have also set the button’s Type option to Toggle.

CHAPTER 15: Choosing Commands with Buttons 238

Turning on this toggle feature would let a button display an initial image, and then after

the user selects that button, a new image appears on that button. For example, a button

might display a green traffic light, and then when the user clicks it, the image changes to

a red traffic light, allowing the button to visually represent a toggled state, such as

allowing or blocking something.

The Position options let you define how your graphic image should appear on the button

next to any existing title. The Scaling pop-up menu lets you define how the graphic

image should appear if the button gets resized.

To see how to add graphic images to a button, follow these steps:

1. Open the MyTest program you created in the previous section, and double-click

MainMenu.xib file inside the Resources folder to switch to Interface Builder.

2. Click the Window icon in Interface Builder window. Your user interface appears.

3. Click the button on your user interface, and then choose Tools ➤ Attributes

Inspector. The Attributes Inspector appears.

4. Make sure that Toggle appears in the Type option (see Figure 15–5).

5. Click the Image pop-up menu, and choose any option. Graphic images appear as

class names such as NSUser or NSColorPanel, as shown in Figure 15–8.

Figure 15–8. The Image, Alt. Image, Position, and Scaling options for displaying graphic images on a button.

6. Click the Alt. Image pop-up menu, and choose any option, preferably a different

option than the one you chose in step 5.

7. Click an icon in the Position group (see Figure 15–8). The straight line represents

your button’s title, and the square represents your button’s graphic image.

8. Choose File ➤ Save or press S to save your changes.

9. Switch to Xcode; click the Build and Run button, or choose Build ➤ Build and

Run. A blank window appears on the screen with the button you placed on the

window. Notice that the button now displays a graphic image.

10. Click the button. Notice that the button now displays a different graphic image,

defined by the Alt. Image pop-up menu.

CHAPTER 15: Choosing Commands with Buttons 239

11. Quit the program by clicking the Stop button or choosing Product ➤ Stop from

the Xcode pull-down menus.

NOTE: To delete an option displayed in the Image or Alt. Image options, just highlight the

currently displayed option and press the Delete or Backspace key.

Customizing the Visual Behavior of a Button
In most cases, you’ll just need to create a button on a user interface, change its title,

and be done. Occasionally, you may want to modify the appearance of a button to hide

(or display) a border, as shown in Figure 15–9.

Figure 15–9. A border with a button and the identical button without a border

To hide (or display) a button’s border, you just need to select (or clear) the Bordered

check box in the button’s Attributes Inspector, as shown in Figure 15–10. By default, the

Bordered check box is selected to display a border around a button since the border

helps identify the button’s boundaries so the user knows where to click.

Figure 15–10. Clearing or selecting the Bordered or Transparent check box can hide (or display) the button
border or the entire button.

One curious option is the ability to make a button transparent, which essentially makes it

invisible. By making a button transparent or just removing its border, you could overlap

a button on another object, such as placing a borderless or transparent button over

different parts of a map. Now instead of seeing the button, users would see the map and

be able to click an object that really has a button overlaid on top of that object.

Another way to customize the behavior and appearance of a button is to modify its

Type, which defines how the button behaves when the user clicks it. Normally when the

user clicks a button, that button appears highlighted momentarily until the user releases

the mouse button. However, a button can also remain highlighted even after the user

releases the mouse button or moves the mouse away from the button.

The default behavior is called Momentary Push In, which is where the button appears

highlighted as long as the user holds the mouse button down while pointing at the

button. To change a button’s behavior, click in the Type pop-up menu, and choose a

different option, as shown in Figure 15–11.

CHAPTER 15: Choosing Commands with Buttons 240

Figure 15–11. The Type pop-up menu lets you change how a button appears when the user clicks it.

Making Buttons Easier to Use
Buttons are one of the simplest user interface objects available since most users know

that they can click a button to choose that particular command. However, you can make

your buttons even easier to use by adding tooltips, sound, or keystrokes that allow users

to choose a button by pressing the keyboard rather than using the mouse.

Creating Tooltips
Tooltips are short, descriptive text that appears if the user leaves the mouse pointer over

a button for a few seconds. The tooltip text appears next to the button, displaying a

short description of the button’s purpose, as shown in Figure 15–12.

Figure 15–12. A tooltip can describe the button’s purpose before the user clicks it.

To create a tooltip, click a button, and then choose Tools ➤ Identity Inspector to open

the Identity Inspector. Then click in the Tooltip field, and type the text you want to

appear as your tooltip, as shown in Figure 15–13.

Figure 15–13. The Tool Tip field appears in the Identity Inspector.

CHAPTER 15: Choosing Commands with Buttons 241

Adding Sound
Normally when users click a button, the only feedback the user gets is the visual change

in the button’s appearance. To give the user audible feedback when the user has clicked

a button, you can add simple sounds.

To add a sound to a button, click the button, choose Tools ➤ Attributes Inspector, and

click in the Sound pop-up menu, as shown in Figure 15–14.

Figure 15–14. The Sound pop-up menu lets you choose from a variety of sound effects.

After you choose a sound, that sound will play every time the user clicks that button. To

remove a sound, select the currently displayed sound effect in the Sound pop-up menu,

and press the Backspace or Delete key.

Choosing a Button with a Keystroke Combination
Normally you can select a button only by clicking it with the mouse. In case you want to

give users an alternative way of selecting a button, you can assign keystroke

combinations to that button, such as F10.

To assign a keystroke combination to a button, click the button, and choose Tools ➤

Attributes Inspector. Click in the Key Equivalent field, and press a keystroke

combination that you want to assign to your button, as shown in Figure 15–15.

Figure 15–15. The Keystroke Equivalent field appears in the Object Attributes window.

Keystroke combinations typically consist of a modifier key followed by another key such

as a letter key or a function key such as F8. The four common types of modifier keys are

as follows:

 (Command)

 (Shift)

 (Option)

 ^ (Control)

CHAPTER 15: Choosing Commands with Buttons 242

Connecting a Button to an IBAction
When you create a button using Interface Builder, you can make that button look as

pretty as you like, but whether you add graphics or change the size of the button, it

won’t do anything until you connect that button to a method written in Objective-C.

Methods that respond to user interface objects are called IBAction methods (Interface

Builder Action). To connect a button to an Objective-C method, you must write the

method in a class file (in both the header and implementation files) and then connect the

button to that method.

NOTE: You can identify methods that respond to the user interface because they include the

word IBAction as their data type such as –(IBAction) methodName.

An IBAction method in the header (.h) file looks like this:

-(IBAction)methodName : (id) sender;

The method name is any descriptive name. The (id) sender portion of the method name

identifies which user interface object is calling that IBAction method to run since it’s

possible to have two or more user interface objects connected to the same IBAction

method.

To see how to create and connect an IBAction method to a button, follow these steps:

1. Open the MyTest program you created in the previous section. The MainMenu.xib

user interface file should already have a button on the user interface window. If

not, then add a button to the user interface window.

2. Click in the MyTestAppDelegate.h file stored in the Classes folder, and add the

bold code as follows:

#import <Cocoa/Cocoa.h>

@interface MyTestAppDelegate : NSObject <NSApplicationDelegate> {
 NSWindow *window;
}

@property (retain) IBOutlet NSWindow *window;

-(IBAction)testMessage:(id)sender;

@end

3. Choose File ➤ Save or press S to save your changes.

4. Click in the MyTestAppDelegate.m file stored in the Classes folder, and add the

bold code as follows:

#import "MyTestAppDelegate.h"

@implementation MyTestAppDelegate

CHAPTER 15: Choosing Commands with Buttons 243

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 // Insert code here to initialize your application
}

- (void)dealloc {

 [window release];
 [super dealloc];
}

-(IBAction)testMessage:(id)sender
{
 NSLog (@"The button works!");
}

@end

5. Choose File ➤ Save or press S to save your changes.

6. Double-click the MainMenu.xib file in the Resources folder to open Interface

Builder.

7. Click the Window icon that appears in the Interface Builder window. The user

interface’s window appears, displaying the button you created earlier.

8. Choose one of the following three methods to connect your IBAction method to

your button:

 Click the button, and choose Tools ➤ Connections Inspector to

display the Connections Inspector, as shown in Figure 15–16.

 Right-click the button to display a heads-up window, as shown in

Figure 15–17. Note that this heads-up window is identical to the

Connections Inspector in Figure 15–16.

 Move the mouse over the button, hold down the Control key, and drag

the mouse over the App Delegate icon to display a heads-up display.

CHAPTER 15: Choosing Commands with Buttons 244

Figure 15–16. The Connections Inspector

Figure 15–17. The heads-up version of the Connections Inspector appears when you right-click a user interface
object

9. Move the mouse pointer over the circle that appears to the right of selector, which

appears under the Sent Actions heading.

10. Drag the mouse from the selector circle over the icon that represents the Test

App Delegate, as shown in Figure 15–18.

CHAPTER 15: Choosing Commands with Buttons 245

Figure 15–18. Dragging the button’s selector over the App Delegate icon lets you connect that button to an
IBAction method.

11. Release the mouse button while keeping the mouse pointing over the Test App

Delegate icon. A pop-up menu of all available IBAction methods appears. In this

case, the only IBAction method available is called testMessage.

12. Click testMessage inside this pop-up menu. You’ve now connected your button to

an IBAction method.

13. Choose File ➤ Save or press S to save your changes.

14. Switch to Xcode; click the Build and Run button, or choose Build ➤ Build and

Run. A blank window appears on the screen with the button you placed on the

window.

15. Click the button on your user interface. You won’t see anything since the button

runs the testMessage IBAction method, which uses the NSLog command to print a

message to the log window.

16. Quit the program by choosing MyTest ➤ Quit.

17. Choose Run ➤ Console, or press R. You should see the printed statements

created by the NSLog command:

2010-09-16 18:35:46.668 UITest[15098:a0f] The button works!

Alternate Dragging Option
In step 8, you dragged from the push button to the App Delegate icon that contains your

IBAction method. You can also go in reverse and drag from the App Delegate icon (or

CHAPTER 15: Choosing Commands with Buttons 246

any icon that represents a class file) and connect it to a button on the user interface. To

use this method, follow these steps:

1. Within Interface Builder, right-click the icon that represents the class file that

contains the IBAction method you want to connect to a user interface object. A

heads-up window appears, listing all the available IBAction methods under the

Received Actions category, as shown in Figure 15–19.

Figure 15–19. Right-clicking a class file icon displays available IBAction methods.

2. Move the mouse pointer over the circle that appears to the right of the IBAction

method you want to use (which is testMessage in Figure 15–18), and drag the

mouse over the button that you want to connect to your IBAction method.

3. Release the mouse button when the mouse pointer appears over the button that

you want to connect to the IBAction method. Your button is now connected to

your IBAction method.

Breaking a Link to an IBAction Method
A button can link to only one IBAction method at a time, although multiple buttons can

link to the same IBAction method. If you want to link a button to a different IBAction

method, you can connect it to a different IBAction method, which breaks the link to any

previously connected IBAction method.

To break a link to an IBAction method, you have three options:

CHAPTER 15: Choosing Commands with Buttons 247

 Click the button, and choose Tools Connections Inspector. Then click

the close icon that appears to the left of the currently connected user

interface object, as shown in Figure 15–20.

Figure 15–20. The close icon lets you break the connection between a button and an IBAction method.

 Right-click the button to display a heads-up version of the

Connections Inspector. Then click the close icon that appears to the

left of the currently connected user interface object.

 Right-click the class file icon (such as App Delegate) that contains the

IBAction method that you want to disconnect. This displays a heads-

up window where you can click the close icon that appears to the left

of the user interface object under the Received Actions category, as

shown in Figure 15–21.

CHAPTER 15: Choosing Commands with Buttons 248

Close icon

Figure 15–21. Right-clicking a class file icon lets you break the connection to its IBAction methods.

Summary
The most common type of button found in Mac programs is the Push Button, but there

are a variety of other types of buttons that you can choose that look differently but act

the same by displaying a command directly on the button.

Although buttons represent the simplest way to display commands on the user

interface, there are many ways to customize a button beyond its size, position, and title

text. You can also display graphic images on a button.

If you choose the Toggle option for a button’s Type, you can make the button display

different title text and graphic images each time the user clicks that button. To make

buttons easier for users, you can also add tooltips to display brief, descriptive

information about a button when the user moves the mouse pointer over that button.

To provide auditory feedback, you can add sounds that play every time the user clicks a

button. In case you want to give users the option of selecting a button without using the

mouse, you can assign keystroke combinations to choose a button without clicking it.

No matter how you customize the appearance of a button, you’ll eventually need to

connect it to a special method called an IBAction method. After you write an IBAction

method in Objective-C and store it in a class file, you’ll need to connect your IBAction

method code to the actual button on your user interface. If you make a mistake or

change your mind, you can always break a connection between a button and an

IBAction method.

Buttons represent one of the more common ways for users to control a program. Use

buttons sparingly because too many buttons on a user interface tends to clutter the

screen and overwhelm the user with too many choices. Buttons may be simple, but

there are so many choices that you can modify a button to make it unique to your

particular Mac program.

249

249

 Chapter

Making Choices with
Radio Buttons and Check
Boxes
Buttons let the user choose a single command. However, many times, you may need to

present the user with several options. You could display multiple buttons, where each

button represents a single option, but this could look cluttered and messy. A more

compact solution is to use radio buttons and check boxes.

Both options let you display choices to the user and provide visual feedback so the user

knows which options they have selected. Radio buttons and check boxes act as a way

to input data into the computer and also offer a limited way to display information back

to the user.

The main difference between the two is that when a program displays a group of radio

buttons, the user can select only one radio button in that group at a time, whereas when

a program displays check boxes, the user can select multiple check boxes, as shown in

Figure 16–1.

16

CHAPTER 16: Making Choices with Radio Buttons and Check Boxes 250

Figure 16–1. The visual difference between radio buttons and check boxes

Radio Buttons
Most car radios have buttons that let you assign a different station to each button. By

pressing a button, you can quickly select your favorite radio station. Computer radio

buttons work the same way, displaying multiple options but allowing the user to select

only one option at a time. The moment the user chooses a different option, the

previously selected option is no longer selected.

Creating and Adding Radio Buttons
Interface Builder treats radio buttons as cells in a table of rows and columns. To create a

group of radio buttons, you just need to drag the Radio Group object from the Object

Library and drop it on your user interface, as shown in Figure 16–2.

CHAPTER 16: Making Choices with Radio Buttons and Check Boxes 251

Figure 16–2. The Radio Group object creates radio buttons on your user interface.

By default, the Radio Group object creates a matrix of two radio buttons. To add more

radio buttons, you can add additional rows or columns.

To add (or remove) additional radio buttons to (from) a radio group, follow these steps:

CHAPTER 16: Making Choices with Radio Buttons and Check Boxes 252

1. Click the Radio Group you want to modify. Handles appear around the edges of

your Radio Group.

2. Choose Tools ➤ Attributes Inspector.

3. Click the up or down arrow next to the Rows text box or Columns text box,

shown in Figure 16–3. Each time you click the up arrow, you add another row or

column of radio buttons. Each time you click the down arrow, you remove a row

or column of radio buttons.

Figure 16–3. The Attributes Inspector window lets you add rows or columns to a Radio Group.

When you add new rows or columns to a Radio Group, you may wind up with an equal

number of radio buttons in adjacent columns, such as three radio buttons in one column

and three more radio buttons in an adjacent column.

If you need to display an odd number of radio buttons, such as three radio buttons in

one column and two radio buttons in an adjacent column, you need to make one or

more radio buttons transparent so they don’t appear.

To make a radio button transparent so it doesn’t appear on the user interface, follow

these steps:

1. Double-click the radio button that you want to hide. Your selected radio button

appears highlighted, as shown in Figure 16–4.

Figure 16–4. Double-clicking a radio button selects that radio button.

2. Choose Tools ➤ Attributes Inspector.

3. Select the Transparent check box, as shown in Figure 16–5.

CHAPTER 16: Making Choices with Radio Buttons and Check Boxes 253

Figure 16–5. Selecting the Transparent check box makes a radio button disappear from view.

4. Click a different radio button. The radio button you designated to be transparent

should disappear. To make the radio button visible again, just repeat these steps

except clear the Transparent check box in step 3.

Creating a Radio Button Title
Every radio button usually needs a title that represents an option for the user to choose.

There are two ways to create a title on a radio button. First, you can double-click the

radio button directly and, when the button’s title appears highlighted, type any text that

you want to appear on the radio button. A second way is to open the Attributes

Inspector window, which lets you type text into the Title field to display text on a button.

Defining a Radio Button’s State
A radio button can be in one of two states: On or Off. When On, the radio button

appears selected. When Off, the radio button appears clear. Normally, only one radio

button in a Radio Group can appear selected at a time.

To set a radio button’s state, follow these steps:

1. Double-click the radio button that you want to modify.

2. Choose Tools ➤ Attributes Inspector.

3. Select (or clear) the State check box.

Determining Which Radio Button a User Selected
After you’ve created a Radio Group, you may need to identify which radio button the

user selected. To get this information, you first need to realize that the entire Radio

Group is based on a class called NSMatrix, and each radio button within that Radio

Group is based on the NSButtonCell class. To determine which radio button the user

clicked, you can use either of two properties of the NSButtonCell class: title or tag.

The title property identifies the actual text of the radio button that the user clicked. The

tag property identifies an arbitrary numeric value assigned to each radio button. With

either property, you must make sure that radio buttons have different title or tag

values.

CHAPTER 16: Making Choices with Radio Buttons and Check Boxes 254

To see how to identify a radio button using the title property, follow these steps:

1. Open the MyTest program you created in the previous chapter.

2. Double-click the MainMenu.xib file stored in the Resources folder. Interface

Builder appears, displaying your user interface window.

3. Choose Tools ➤ Library.

4. Drag and drop the Radio Group anywhere on your user interface window. Two

radio buttons initially appear.

5. Double-click the top radio button. The radio button’s title appears highlighted.

6. Type Top and press Return.

7. Double-click the bottom radio button. When the radio button’s title appears

highlighted, type Bottom and press Return. (You may need to drag the side

handle of the Radio Group so the radio button titles don’t appear cut off.) Your

user interface should display two radio buttons, similar to Figure 16–6.

Figure 16–6. The appearance of your user interface with two radio buttons added

8. Choose File ➤ Save or press S to save your changes.

9. Switch to Xcode, click the MyTestAppDelegate.h file stored in the Classes folder,

and modify the code as follows:

#import <Cocoa/Cocoa.h>

@interface MyTestAppDelegate : NSObject <NSApplicationDelegate> {

CHAPTER 16: Making Choices with Radio Buttons and Check Boxes 255

 NSWindow *window;
}

@property (retain) IBOutlet NSWindow *window;

-(IBAction)findSelectedButton:(id)sender;

@end

10. Choose File ➤ Save or press S to save your changes.

11. Click the MyTestAppDelegate.m file stored in the Classes folder and modify the

code as follows:

#import "MyTestAppDelegate.h"

@implementation MyTestAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 // Insert code here to initialize your application
}

- (void)dealloc {

 [window release];
 [super dealloc];
}

-(IBAction)findSelectedButton:(id)sender {
 NSButtonCell *selCell = [sender selectedCell];
 //NSLog (@"Title cell is %@", [selCell title]);
 NSLog (@"Title cell is %@", selCell.title);
}

@end

In the findSelectedButton method, you have a choice of how you want to access the

radio button’s title property. You can use the square bracket method like this:

[selCell title];

Or you can use the dot notation method like this:

selCel.title

Both methods are equivalent, but the dot notation method is preferred because it’s

simpler to understand.

12. Choose File ➤ Save or press S to save your changes.

13. Double-click the MainMenu.xib file in the Resources folder. Interface Builder

appears, displaying your user interface window with its two radio buttons.

14. Right-click the Radio Group. A heads-up window appears.

CHAPTER 16: Making Choices with Radio Buttons and Check Boxes 256

15. Move the mouse pointer over the circle that appears to the right of selector,

under the Sent Actions category, and drag the mouse to the MyTest App

Delegate icon, as shown in Figure 16–7.

Figure 16–7. Dragging the Radio Group’s selector button connects it to your Objective-C method.

16. Release the mouse button while the mouse pointer is over the My Test App

Delegate icon. A pop-up window appears, listing all the IBAction methods

available in that class file.

17. Choose the findSelectedButton method.

18. Choose File ➤ Save or press S to save your changes.

19. Switch to Xcode and click the Build and Run button or choose Build ➤ Build and

Run. A blank window appears on the screen with the radio buttons you placed on

the window.

20. Click the radio button named Bottom. Nothing will happen because the radio

button is using the NSLog command to write to the log window.

21. Click the radio button named Top.

22. Quit your program by choosing MyTest ➤ Quit.

23. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-09-18 12:15:39.772 UITest[22255:a0f] Title cell is Bottom
2010-09-18 12:15:40.927 UITest[22255:a0f] Title cell is Top

If you want to identify radio buttons using the tag property, you must first give each

radio button a unique tag value by following these steps:

1. Double-click the radio button that you want to modify.

CHAPTER 16: Making Choices with Radio Buttons and Check Boxes 257

2. Choose Tools ➤ Attributes Inspector. The Attributes Inspector window appears.

3. Scroll down the Attributes Inspector window until you see the tag field under the

Control category, as shown in Figure 16–8.

Figure 16–8. The Tag field appears under the Control category in the Attributes Inspector window.

4. Click in the tag field and type a number.

5. Repeat steps 1 to 4 for each radio button in the Radio Group. Be sure to give

each radio button a unique tag value.

To use the tag property to identify which radio button the user clicked, you just have to

look for the tag property:

-(IBAction)findSelectedButton:(id)sender {
 NSButtonCell *selCell = [sender selectedCell];
 NSLog(@"Tag value of the cell is %d", selCell.tag);
 // NSLog(@"Tag value of the cell is %d", [selCell tag]);
}

Just as with the title property, you can access the tag property using the square

brackets method or the dot notation method.

Check Boxes
Radio buttons typically display multiple options but let the user choose only one option

at a time. Check boxes also display multiple options, but the user can select zero or

more options at the same time. When choices aren’t mutually exclusive, use check

boxes.

Creating Check Boxes
To create a check box, just drag a Check Box object from the Object Library and drop it

on your user interface, as shown in Figure 16–9.

CHAPTER 16: Making Choices with Radio Buttons and Check Boxes 258

Figure 16–9. The Check Box object in the Object Library

Dragging and dropping a Check Box object creates only a single check box at a time.

You’ll need to drag and drop additional Check Box objects if you need more check

boxes.

CHAPTER 16: Making Choices with Radio Buttons and Check Boxes 259

Defining a Check Box’s Title and State
The title of a check box displays the option that the check box represents. The state

defines whether the check box is selected or cleared.

There are two ways to create a title on a check box. First, you can double-click the

check box directly and, when the check box’s title appears highlighted, type any text

that you want to appear.

Second, you can click a check box, choose Tools ➤ Attributes Inspector to open the

Attributes Inspector window, and then click in the Title field and type the text you want

to appear on the check box.

The Attributes Inspector window is also where you can define the check box’s State

property, using the check boxes that appear next to State under the Control category,

as shown in Figure 16–10.

Figure 16–10. The Enabled check box

To determine the state property of a check box, you need to check if the state property

is equal to NSOnState or NSOffState. To see how to identify a check box, follow these

steps:

1. Open the MyTest program you modified in the previous section.

2. Double-click the MainMenu.xib file stored in the Resources folder. Interface

Builder appears and displays your user interface window.

3. Choose Tools ➤ Library.

4. Drag and drop a Check Box object anywhere on your user interface window so

that it looks similar to Figure 16–11.

CHAPTER 16: Making Choices with Radio Buttons and Check Boxes 260

Figure 16–11. Placing a check box on your user interface

5. Click the MyTestAppDelegate.h file stored in the Classes folder and modify the

code as follows:

#import <Cocoa/Cocoa.h>

@interface MyTestAppDelegate : NSObject <NSApplicationDelegate> {
 NSWindow *window;
}

@property (retain) IBOutlet NSWindow *window;

-(IBAction)checkBox:(id)sender;

@end

6. Choose File ➤ Save or press S to save your changes.

7. Click the MyTestAppDelegate.m file stored in the Classes folder and modify the

code as follows:

#import "MyTestAppDelegate.h"

@implementation MyTestAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 // Insert code here to initialize your application
}

CHAPTER 16: Making Choices with Radio Buttons and Check Boxes 261

- (void)dealloc {

 [window release];
 [super dealloc];
}

-(IBAction)checkBox:(id)sender
{
 NSButton *check = sender;
 NSLog (@"Title = %@", check.title);
 switch ([check state])
 {
 case NSOnState:
 NSLog (@"Check box is On");
 break;
 case NSOffState:
 NSLog (@"Check box is Off");
 break;
 }
 NSLog (@"*****");
}

@end

8. Choose File ➤ Save or press S to save your changes.

9. Double-click the MainMenu.xib file in the Resources folder. Interface Builder

appears, displaying your user interface window.

10. Right-click the check box. A heads-up window appears.

11. Move the mouse pointer over the circle that appears to the right of selector,

under the Sent Actions category, and click and drag the mouse to the My Test

App Delegate icon.

12. Release the mouse button while the mouse pointer is over the My Test App

Delegate icon. A pop-up window appears, listing all the IBAction methods

available in that class file.

13. Choose the checkBox method.

14. Choose File ➤ Save or press S to save your changes.

15. Switch to Xcode and click the Build and Run button or choose Build ➤ Build and

Run. A blank window appears on the screen with the check box you placed on

the window.

16. Click the check box two times to see each state of the check box.

17. Quit your program by choosing MyTest ➤ Quit.

18. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

CHAPTER 16: Making Choices with Radio Buttons and Check Boxes 262

2010-09-18 21:45:28.606 UITest[23899:a0f] Title = Check
2010-09-18 21:45:28.613 UITest[23899:a0f] Check box is Off
2010-09-18 21:45:28.614 UITest[23899:a0f] *****
2010-09-18 21:45:29.742 UITest[23899:a0f] Title = Check
2010-09-18 21:45:29.744 UITest[23899:a0f] Check box is On
2010-09-18 21:45:29.744 UITest[23899:a0f] *****

Summary
When you need to display multiple options to the user, use radio buttons or check

boxes. Radio buttons let you display mutually exclusive choices, while check boxes let

the user select zero or more options.

When you create a Radio Group, you’re initially creating two radio buttons that work

together, although you can add more radio buttons by adding rows or columns. In a

Radio Group, only one radio button can be selected at any given time.

When you create a check box object, you create only a single check box at a time. You

need to add additional check boxes manually.

To identify which radio button or check box the user clicked, you can use the Title

property. To identify the state of a check box, you need to examine the State property

to see if it equals NSOnState or NSOffState.

Radio buttons and check boxes are handy when you need to display a small number of

options for the user to select. The more options you need to display, the more cluttered

your user interface can look with multiple radio buttons or check boxes.

263

263

 Chapter

Making Choices with
Pop-Up Buttons
Radio buttons and check boxes let users select from multiple options. Unfortunately,

each time you need to display another option, you also need to display another radio

button or check box, which takes up space. The more radio buttons or check boxes

displayed, the more cluttered and confusing your user interface will look.

To avoid this problem, you can also display options to the user through pop-up buttons.

A pop-up button takes up a minimal amount of space, but when the user clicks it, a list

of options appears that can be far more numerous than the limited number of choices

you could display through multiple radio buttons or check boxes.

When you need to display a large number of options and need to conserve space on

your user interface, use a pop-up button in place of multiple radio buttons or check

boxes. The drawback is that all the available options won’t be visible to the user at all

times. The advantage is that hiding all the available options prevents your program from

overwhelming the user with too many choices.

Pop-Up Button Basics
Like radio buttons, a pop-up button lets the user select only from a predefined list of

options. Unlike radio buttons, a pop-up button always takes up a fixed amount of space

no matter how many options you want to display to the user.

A pop-up button displays the currently selected option as a wide but short button. As

soon as the user clicks the button, the pop-up menu expands to show a list of options,

as shown in Figure 17–1. From this expanded list, the user can click one of the many

available options.

17

CHAPTER 17: Making Choices with Pop-Up Buttons 264

Figure 17–1. A pop-up button takes up minimal amount of space, but can provide a list of choices when clicked.

To create a pop-up button, just open the Library window in Interface Builder by

choosing Tools ➤ Library. Then drag the Pop Up Button object from the Object Library

(see Figure 17–2) to your user interface.

CHAPTER 17: Making Choices with Pop-Up Buttons 265

Figure 17–2. The Pop Up Button object appears in the Object Library.

After you’ve placed a Pop Up Button object on your user interface window, the next

step is to fill its list with different choices. There are two ways to create and edit a pop-

up button list:

 In Interface Builder

 Using Objective-C code

CHAPTER 17: Making Choices with Pop-Up Buttons 266

Using Interface Builder is simple since you just need to type or edit a list of options.

However, once your program starts running, your pop-up button list remains fixed.

Using Objective-C code to create a pop-up button list is much harder, but it gives you

the flexibility of changing the list as your program runs.

You can use either method separately or both in combination. For example, you might

create your initial pop-up button list in Interface Builder, and then modify it using

Objective-C code as your program runs. Let’s see how to do so now.

Creating a Pop-Up Button List in Interface Builder
By default, every pop-up button comes with three items, labeled Item 1, Item 2, and

Item 3. To create your own list of choices, you have to rename these existing default

choices and add or delete additional items, depending on how many choices you want

to offer. To create a pop-up button and edit its existing three items, follow these steps:

1. Open the MyTest program that you modified in Chapter 16.

2. Double-click on the MainMenu.xib file in the Resources folder to open Interface

Builder. Your user interface appears.

3. Choose Tools ➤ Library to make the Object Library window appear.

4. Drag a Pop Up Button object from the Object Library and drop it on your user

interface window.

5. Double-click the pop-up button. A list of three items appears, as shown in Figure

17–3.

Figure 17–3. Double-clicking a pop-up button displays its menu contents.

CHAPTER 17: Making Choices with Pop-Up Buttons 267

6. Double-click each item in the menu (such as Item 1) and type a new word or

phrase. Repeat for each item that you want to change.

Adding (and Deleting) Items on a Pop-Up Button List
By default, a pop-up button lists only three menu items. Chances are good you’ll need

more (or less) than exactly three menu items, so you can add or delete menu items at

any time. To add new items to a pop-up button’s list, make sure that the pop-up button

appears on your user interface in Interface Builder and then follow these steps:

1. Open the MyTest program that you modified in the previous section (If it isn't

already open).

2. Double-click the MainMenu.xib file located in the Resources folder. Interface

Builder appears and displays your user interface.

3. Double-click the pop-up button you want to modify. A list of currently stored

menu items appears, as shown in Figure 17–3.

4. (Optional) Click the menu item that you want to delete and press Delete or

Backspace. Your selected menu item disappears.

5. Choose Tools ➤ Library to make the Library window appear.

6. Scroll down the Library window until you see the Menu Item object, as shown in

Figure 17–4.

CHAPTER 17: Making Choices with Pop-Up Buttons 268

Figure 17–4. The Menu Item object lets you add new items to a pop-up button’s menu.

7. Drag the Menu Item object over the pop-up button’s menu until you see a white

plus sign inside a green circle, as shown in Figure 17–5.

CHAPTER 17: Making Choices with Pop-Up Buttons 269

Figure 17–5. A plus sign appears when you’ve placed a menu item inside a pop-up button’s menu.

8. Release the mouse button. Your newly added menu item appears in the pop-up

button’s menu. Repeat this step for each additional menu item you want to add.

9. (Optional) Drag a Separator Menu Item object or Submenu Menu Item object to

your pop-up button’s menu. The Separator Menu Item object displays a line to

group related menu items together. The Submenu Menu Item object lets you

create an additional submenu that you can fill with additional menu items. Both

are shown in action in Figure 17–6.

Figure 17–6. A separator and submenu can further enhance the appearance of your menus.

CHAPTER 17: Making Choices with Pop-Up Buttons 270

Renaming an Item in a Pop-Up Button List
After adding or deleting items in a pop-up button’s list, you need to rename the items so

they don’t display a generic title like Item 2 or Item 3. There are two ways to rename an

item, as shown in Figure 17–7:

Figure 17–7. The two ways to rename an item displayed in a pop-up button’s list

 Double-click the pop-up button directly on your user interface to

display its list of choices. Then double-click the item that you want to

rename and type new text.

 Double-click the pop-up button directly on your user interface to

display its list of choices. Then click the item in the list that you want

to rename. Choose Tools ➤ Attributes Inspector to open the Object

Attributes window, and type new text in the Title field.

Modifying a Pop-Up Button’s List with Code
Another way to modify a pop-up button’s list of choices is to create an array and then

load that array of data into the pop-up button’s list. This option requires writing

Objective-C code and connecting your code to the pop-up button on your user

interface.

To connect your Objective-C code to a user interface object, you must create something

called an IBOutlet. Basically, any variable declared as an IBOutlet can display data to a

user interface object, such as a pop-up button.

CHAPTER 17: Making Choices with Pop-Up Buttons 271

Next, you need to create an array and fill it with data. Then you need to store this array

of data in your IBOutlet variable that’s connected to your pop-up button, which will

display your data on the screen.

To see how to create an array and connect this data to a pop-up menu button, follow

these steps:

1. Open the MyTest program from earlier in the chapter.

2. Click the MyTestAppDelegate.h file located in the Classes folder and type the

following bold text in the existing Objective-C code:

#import <Cocoa/Cocoa.h>

@interface MyTestAppDelegate : NSObject <NSApplicationDelegate> {
 NSWindow *window;

 NSPopUpButton *myPopUp;
 }

@property (retain) IBOutlet NSWindow *window;
@property (retain) IBOutlet NSPopUpButton *myPopUp;

@end

The myPopUp pointer name is arbitrary, but this will represent your pop-up button.

3. Choose File ➤ Save or press S to save your changes.

4. Click the MyTestAppDelegate.m file and type the following bold text in the existing

Objective-C code:

#import "UITestAppDelegate.h"

@implementation MyTestAppDelegate

@synthesize window;
@synthesize myPopUp;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 // Insert code here to initialize your application
 NSString *object1 = @"Electric trains";
 NSString *object2 = @"Bicycles";
 NSString *object3 = @"Video games";
 NSString *object4 = @"Skateboards";
 NSMutableArray *myArray;
 myArray= [NSMutableArray arrayWithObjects: object1, object2, object3, object4, nil];
 [myPopUp removeAllItems];
 [myPopUp addItemsWithTitles: myArray];
}

- (void)dealloc {
 [myPopup release];
 [window release];
 [super dealloc];
}

CHAPTER 17: Making Choices with Pop-Up Buttons 272

@end

This applicationDidFinishLaunching method creates four string objects, declares an

NSMutableArray, stuffs the four string objects into this array, uses the removeAllItems

method to get rid of the three default items normally stored in the pop-up button, and

finally adds the array item to the pop-up button using the addItemsWithTitles method

and the array itself.

5. Choose File ➤ Save or press S to save your changes.

6. Double-click the MainMenu.xib file located in the Resources folder. Interface

Builder appears and displays your user interface window.

7. Right-click the My Test App Delegate icon. A heads-up window appears.

8. Move the mouse pointer over the circle that appears to the right of myPopUp, which

appears under the Outlets category. Click and drag the mouse pointer over the

pop-up button on your user interface and release the mouse button to connect

the user interface object to the myPopUp pointer, as shown in Figure 17–8.

Figure 17–8. Dragging and dropping connects the myPopUp IBOutlet to your actual pop-up button object on
the user interface.

As an alternative to step 8, you can right-click the pop-up button on the user interface to

display a heads-up window. Then click and drag the circle to the right of New

Referencing Outlet under the Referencing Outlets category and drop it over the class file

icon that contains the IBOutlet you want to use, as shown in Figure 17–9.

CHAPTER 17: Making Choices with Pop-Up Buttons 273

Figure 17–9. You can right-click the Pop Up Button object on the user interface and connect it to the class file
that contains the IBOutlet that represents the pop-up button.

9. Choose File ➤ Save or press S to save your changes.

10. Switch back to Xcode and click the Build and Run button or choose Build ➤ Build

and Run. As long as you didn’t mistype anything, you should see a window pop

up with your pop-up button on it.

11. Click the pop-up button and you’ll see the contents of your array displayed in the

pop-up button’s list, as shown in Figure 17–10.

Figure 17–10. The array contents appear in the pop-up button’s list of choices.

CHAPTER 17: Making Choices with Pop-Up Buttons 274

12. Quit your program by choosing MyTest ➤ Quit.

Determining What a User Selected
If you define your pop-up button’s list of choices through Interface Builder, you can

identify each choice by the title or tag property. If you create your pop-up button’s list

of choices with an array using Objective-C code, you can identify what the user selected

through the text of that item or the index position of the selected item.

The Title property identifies the actual text of the option that the user clicked. The Tag

property identifies an arbitrary numeric value assigned to each option through the Object

Attributes window. With either property, you must make sure that all your pop-up

button’s options have different Title or Tag values.

The problem with identifying menu items through the Title value is that you must

identify the text exactly. If the menu item is “Open File” and your Objective-C code

searches for “open file” instead, the code won’t work since the text isn’t exactly the

same. For that reason, you may prefer to identify a selected menu item by using its

index position.

The first (top) menu item is considered at index position 0, the second at index position

1, and so on. By searching for index position, you don’t have to worry about the actual

text displayed by each menu item.

To retrieve the index position of an item in a menu, you need to retrieve the value of the

index item, stored in the indexOfSelectedItem property. After you retrieve this index

value, you need to store it in a variable such as:

-(IBAction)findSelectedButton:(id)sender;
{
 NSInteger index = [sender indexOfSelectedItem];
 NSLog(@"Selected item index is %i", index);
}

If the preceding method were connected to a pop-up button, the sender would retrieve

the item that the user selected in the pop-up button, and the indexOfSelectedItem

property would retrieve that selected item’s index position.

To see how to identify a selected item chosen from a pop-up button by its displayed

text (Title property) or its index position, follow these steps:

1. Open the MyTest program you modified in the previous section.

2. Click the MyTestAppDelegate.h file located in the Classes folder and modify its

code as follows:

#import <Cocoa/Cocoa.h>

@interface MyTestAppDelegate : NSObject <NSApplicationDelegate> {
 NSWindow *window;

 NSPopUpButton *myPopUp;
 }

CHAPTER 17: Making Choices with Pop-Up Buttons 275

@property (retain) IBOutlet NSWindow *window;
@property (retain) IBOutlet NSPopUpButton *myPopUp;

-(IBAction)findSelectedButton:(id)sender;

@end

3. Choose File ➤ Save or press S to save your changes.

4. Click the MyTestAppDelegate.m file located in the Classes folder and modify the

code as follows:

#import "MyTestAppDelegate.h"

@implementation MyTestAppDelegate

@synthesize window;
@synthesize myPopUp;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 // Insert code here to initialize your application
 NSString *object1 = @"Electric trains";
 NSString *object2 = @"Bicycles";
 NSString *object3 = @"Video games";
 NSString *object4 = @"Skateboards";
 NSMutableArray *myArray;
 myArray= [NSMutableArray arrayWithObjects: object1, object2, object3, object4, nil];

 [myPopUp removeAllItems];
 [myPopUp addItemsWithTitles: myArray];
}

- (void)dealloc {
 [myPopUp release];
 [window release];
 [super dealloc];
}

-(IBAction)findSelectedButton:(id)sender {
 NSPopUpButtonCell *selCell = [sender selectedCell];
 //NSLog(@"Selected cell is %d", [selCell tag]);
 NSLog (@"Selected cell is %d", selCell.tag);
 //NSLog (@"Title cell is %@", [selCell title]);
 NSLog (@"Title cell is %@", selCell.title);

 NSInteger index = [sender indexOfSelectedItem];
 NSLog(@"Selected item index is %i", index);
}

@end

In the findSelectedButton method, you have a choice of how you want to access the

Title property; you can use square brackets like this,

[selCell title];

CHAPTER 17: Making Choices with Pop-Up Buttons 276

or you can use the dot notation method like this:

selCel.title

Both methods are equivalent and you can choose whichever method you prefer,

although the dot notation method is now considered the preferred method to use.

5. Choose File ➤ Save or press S to save your changes.

6. Double-click the MainMenu.xib file located in the Resources folder. Interface

Builder appears and displays your user interface window.

7. Right-click the pop-up button on the user interface. A heads-up window appears.

8. Move the mouse pointer over the circle that appears to the right of selector,

under the Sent Actions category, and click and drag the mouse to the Test App

Delegate icon.

9. Release the mouse button while the mouse pointer is over the Test App Delegate

icon. A pop-up window appears, listing all the IBAction methods available in that

class file.

10. Choose the findSelectedButton method.

11. Choose File ➤ Save or press S to save your changes.

12. Switch to Xcode and click the Build and Run button or choose Build ➤ Build and

Run. A blank window appears on the screen with the radio buttons you placed on

the window.

13. Click the pop-up button. A list of options appears.

14. Click an option such as Bicycles.

15. Click the pop-up button again and click a different option such as Skateboards.

16. Quit your program by choosing MyTest ➤ Quit.

17. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-12-06 09:36:11.435 NewTest[15438:a0f] Selected cell is 0
2010-12-06 09:36:11.439 NewTest[15438:a0f] Title cell is Bicycles
2010-12-06 09:36:11.443 NewTest[15438:a0f] Selected item index is 1
2010-12-06 09:36:14.222 NewTest[15438:a0f] Selected cell is 0
2010-12-06 09:36:14.222 NewTest[15438:a0f] Title cell is Skateboards
2010-12-06 09:36:14.223 NewTest[15438:a0f] Selected item index is 3

Notice that the Tag property of both items is 0 because you didn’t define this value. If

you created your pop-up button’s list of options through Interface Builder, you could set

this Tag property of each item through the Object Attributes window.

CHAPTER 17: Making Choices with Pop-Up Buttons 277

Summary
Think of pop-up buttons as an alternative to radio buttons. Whenever your number of

options starts to get too numerous to display as multiple radio buttons, switch to a pop-

up button that can take up a minimal amount of space and still display a huge list of

options for the user to select. The only drawback is that, whereas radio buttons make

the options clearly visible at all times, a pop-up button requires that the user click it to

see the list of choices.

The simplest and most straightforward way to create a list of options to display on a

pop-up button is to expand the icon view that appears between the left and middle pane

of the Xcode window. Then you can add, delete, or rename items that you want to

appear as choices in your pop-up button list.

If you just want to rename the list of items in the pop-up button, you can either double-

click the pop-up button directly to view and edit its list of choices, or you can double-

click the pop-up button directly, click each item in the list, and open its Object Attributes

window to edit the Title text and add a distinct value to each item’s Tag property.

If you need to change the list of items displayed in a pop-up button, you can create its

list of choices using Objective-C code. First, you need to create an IBOutlet variable to

connect with your pop-up menu. Then, you need to connect your pop-up button on the

user interface to the IBOutlet variable. Finally, you need to create an array of your pop-

up button options, and then store this array in the IBOutlet variable that represents your

pop-up button. Linking this IBOutlet variable to your pop-up button on the user

interface allows the array data to appear as the pop-up button’s list of choices.

Whenever you need to display a large number of choices in a small amount of space,

use a pop-up button. By filling a pop-up button’s list using an array and Objective-C

code, you can even change the pop-up button’s list of choices while your program runs.

CHAPTER 17: Making Choices with Pop-Up Buttons 278

279

279

 Chapter

Inputting and Outputting
Data with Labels, Text
Fields, and Combo Boxes
Radio buttons, check boxes, and pop-up buttons let the user choose from a fixed list of

choices. However, many times a program may need to request data that won’t fit easily

into a limited number of choices, such as asking for the user’s name.

To accept data, a program needs to let the user type in data. To display data, a program

can use a text field or a label. A label basically can display only text, but a text field can

display text or allow the user to type in text. With a text field, users can type in any type

of data such as text or numbers.

For even greater flexibility, you can use a combo box, which lets the user type in data or

select from a list of choices, just like a pop-up button. By using a text field, label, or

combo box, your user interface can display information and accept data to use.

Using Labels
A label serves two purposes. First, it can display static information to the user, such as

listing short instructions explaining the purpose of other user interface objects. For

example, if your program displays a text field, the user may have no idea what type of

information your program expects to receive in that text field. However, if you put a label

next to that text field and display the word “Name” in that label, it becomes clear what

type of information the user needs to type into that text field.

Labels can also be used to display information to the user, such as a warning. For

example, if the user types in an incorrect password, a label can display a message

telling the user what happened. When you need to display static or changing

information, you can use a label.

18

CHAPTER 18: Inputting and Outputting Data with Labels, Text Fields, and Combo Boxes 280

Adding a Label to Your User Interface
A label is useful for displaying text on the user interface, such as instructions to the user

or brief descriptions of what other controls might do, such as a label that identifies a

slider for adjusting the volume. To create a label, follow these steps:

1. Double-click the .xib user interface file that contains the window to which you

want to add a label. Interface Builder appears.

2. Choose Tools ➤ Library to display the Library window.

3. Scroll through the Object Library and look for the Label object, as shown in Figure

18–1.

Figure 18–1. The Label object in the Object Library

CHAPTER 18: Inputting and Outputting Data with Labels, Text Fields, and Combo Boxes 281

4. Drag the Label object from the Object Library and drop it on your user interface.

Editing Text on a Label
When you first place a label on the user interface, it displays the generic text Label,
which probably isn’t what you want. To display custom text in a label, you have three

options:

 Double-click the label and type or edit text

 Click the label, choose Tools ➤ Attributes Inspector, and edit the

label’s title property

 Assign a string to the label’s stringValue property using Objective-C

code:

labelStatic.stringValue = @"Type a name:";

The first two options let you modify a Label’s text at design time when you’re creating

your program, but the text remains static once your program runs. The last option that

uses Objective-C code to change a label’s text lets you change the label’s text while

your program is running, which lets you create dynamic text that can change based on

the user’s actions.

To see how to use a label to display static text and dynamic text, follow these steps:

1. Open the MyTest program that you modified in Chapter 17.

2. Double-click the MainMenu.xib file stored in the Resources folder. Interface

Builder appears and displays your user interface window.

3. Click any items currently displayed on the user interface and press Delete to

remove them.

4. Add two Label objects, one Text Field object, and one Push Button object so that

your user interface looks like Figure 18–2.

CHAPTER 18: Inputting and Outputting Data with Labels, Text Fields, and Combo Boxes 282

Figure 18–2. The design of a simple user interface with two labels, a push button, and a text field

5. Resize both labels so they are at least 125 in width. To resize a label, click on it so

handles appear and drag a handle to the left or right.

6. Choose File ➤ Save or press S to save your changes.

7. Click the MyTestAppDelegate.h file and modify the code as follows:

#import <Cocoa/Cocoa.h>

@interface MyTestAppDelegate : NSObject <NSApplicationDelegate> {
 NSWindow *window;
 NSTextField *labelStatic;
 NSTextField *labelDynamic;
 NSTextField *textInput;
}

@property (retain) IBOutlet NSWindow *window;
@property (retain) IBOutlet NSTextField *labelStatic;
@property (retain) IBOutlet NSTextField *labelDynamic;
@property (retain) IBOutlet NSTextField *textInput;

-(IBAction)displayMessage:(id)sender;

@end

8. Choose File ➤ Save or press S to save your changes.

9. Click the MyTestAppDelegate.m file and modify the code as follows:

CHAPTER 18: Inputting and Outputting Data with Labels, Text Fields, and Combo Boxes 283

#import "MyTestAppDelegate.h"

@implementation MyTestAppDelegate

@synthesize window;
@synthesize labelStatic;
@synthesize labelDynamic;
@synthesize textInput;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 // Insert code here to initialize your application
 labelStatic.stringValue = @"Type a name:";
}

- (void)dealloc {

 [window release];
 [super dealloc];
}

-(IBAction)displayMessage:(id)sender
{
 NSMutableString *greeting;
 greeting = [NSMutableString stringWithString: @"Hello, "];
 [greeting appendString: textInput.stringValue];
 labelDynamic.stringValue = greeting;
}

@end

10. Choose File ➤ Save or press S to save your changes.

11. Double-click the MainMenu.xib file stored in the Resources folder. Interface

Builder appears and displays your user interface window.

12. Right-click the My Test App Delegate icon. A heads-up window appears.

13. Move the mouse pointer over the circle that appears to the right of labelDynamic,

which appears under the Outlets heading. Click and drag the mouse pointer over

the label on your user interface and release the mouse button to connect the label

to the labelDynamic property, as shown in Figure 18–3.

CHAPTER 18: Inputting and Outputting Data with Labels, Text Fields, and Combo Boxes 284

Figure 18–3. Dragging and dropping connects the labelDynamic IBOutlet to your label on the user interface.

NOTE: As an alternative to step 13, you can right-click the label on the user interface to display a
heads-up window. Then click and drag the circle to the right of New Referencing Outlet under the
Referencing Outlets category and drop it over the class file icon that contains the IBOutlet you

want to use.

14. Move the mouse pointer over the circle that appears to the right of labelStatic,

which appears under the Outlets heading. Click and drag the mouse pointer over

the label on your user interface and release the mouse button to connect the label

to the labelStatic property, as shown in Figure 18–4.

CHAPTER 18: Inputting and Outputting Data with Labels, Text Fields, and Combo Boxes 285

Figure 18–4. Dragging and dropping connects the labelStatic IBOutlet to your label on the user interface.

15. Move the mouse pointer over the circle that appears to the right of

labelTextInput, which appears under the Outlets heading. Click and drag the

mouse pointer over the text field on your user interface and release the mouse

button to connect the text field to the LabeltextInput property, as shown in

Figure 18–5.

Figure 18–5. Dragging and dropping connects the LabeltextInput IBOutlet to your text field on the user
interface.

CHAPTER 18: Inputting and Outputting Data with Labels, Text Fields, and Combo Boxes 286

16. Move the mouse pointer over the circle that appears to the right of

displayMessage, which appears under the Received Actions heading. Click and

drag the mouse pointer over the push button on your user interface and release

the mouse button to connect the push button to the displayMessage method, as

shown in Figure 18–6.

Figure 18–6. Dragging and dropping connects the displayMessage method to your push button on the user
interface.

17. Choose File ➤ Save or press S to save your changes.

18. Switch to Xcode and click the Build and Run button or choose Build ➤ Build and

Run. As long as you didn’t mistype anything, you should see a window pop up

with your pop-up button on it.

19. Click in the text field and type a name, such as Joe or Mary.

20. Click the push button. The label underneath displays the message with the name

you typed into the text field, such as “Hello, Joe.”

21. Quit your program by choosing MyTest ➤ Quit.

Although the program you just created is fairly simple, it demonstrates how to change a

label’s text using by using Objective-C code and the label’s stringValue property. To

change a label’s text with Objective-C code, you also need to connect your label objects

to variables.

Changing a label’s text using Objective-C code isn’t as straightforward as changing a

label’s text when you’re designing your user interface, but using Objective-C lets you

create dynamic text that changes based on the user’s actions.

CHAPTER 18: Inputting and Outputting Data with Labels, Text Fields, and Combo Boxes 287

Using Text Fields
A text field can display text or let the user type in new text. As a result, a text field can

get data from the user and display information for the user to see and edit, which isn’t

possible with a label. If you just need to display information, use a label. If you need to

accept data and allow editing, use a text field.

Adding a Text Field to Your User Interface
To create a text field on your user interface, follow these steps:

1. Double-click the .xib user interface file that contains the window to which you

want to add a text field. Interface Builder appears.

2. Choose Tools ➤ Library to display the Object Library.

3. Scroll through the Object Library and look for the Text Field object, as shown in

Figure 18–7.

CHAPTER 18: Inputting and Outputting Data with Labels, Text Fields, and Combo Boxes 288

Figure 18–7. The Text Field object in the Object Library

4. Drag the Text Field object from the Object Library and drop it on your user

interface.

CHAPTER 18: Inputting and Outputting Data with Labels, Text Fields, and Combo Boxes 289

Editing Text in a Text Field
When you first place a text field on the user interface, it will be empty. To display custom

text in a text field, you have three options:

 Double-click the text field and type or edit text

 Click the text field, choose Tools ➤ Attributes Inspector, and edit the

text field’s title property

 Assign a string to the text field’s stringValue property using

Objective-C code

When creating a text field on a user interface, you can customize two types of text in the

text field. First, you can type text into the Title field, which displays text that the user can

then edit or delete. Second, you can define something called placeholder text in the

Placeholder field, as shown in Figure 18–8.

Figure 18–8. The Placeholder field in the Object Attributes window

Any text that you type in the Placeholder field appears inside your text field faintly

dimmed when the text field is empty. The purpose of such placeholder text is to provide

a brief description or instruction to help a user understand what to type inside a

particular text field.

For example, if you wanted a user to type a name into a text field, you could type First
Name in the Placeholder field. This text will appear dimmed in the text field, as shown in

Figure 18–9, but as soon as the user clicks in that text field, the placeholder text

completely vanishes.

Figure 18–9. Placeholder text appears dimmed inside a text field.

Retrieving Data from a Text Field
Part of the usefulness of a text field is that it allows someone to type something into the

text field that your program can then retrieve. To enable your program to retrieve the

data a user types into a text field, you need to declare an NSTextField variable, which is

CHAPTER 18: Inputting and Outputting Data with Labels, Text Fields, and Combo Boxes 290

what holds the data displayed or typed into a text field. Declaring an NSTextField

variable in the header (.h) file might look like this:

@interface UITestAppDelegate : NSObject <NSApplicationDelegate> {
 NSWindow *window;
 NSTextField *textInput;
}

@property (retain) IBOutlet NSWindow *window;
@property (retain) IBOutlet NSTextField *textInput;

After creating a variable to represent the NSTextField, you need to use the @synthesize

command in the implementation (.m) file:

@synthesize textInput;

Finally, you need to connect the textInput variable to your actual text field on your user

interface window. Now when the user types something in the text field, that data will get

stored in the textInput variable, which you can retrieve through the stringValue

property:

textInput.stringValue

Using Combo Boxes
With a text field, users have the option of typing in new data. However, what if you want

to give users the option of either typing in data or selecting from a list of choices? You

could use a text field along with a bunch of radio buttons or a single pop-up button. As a

simpler solution, you can use a combo box, which combines the features of a text field

and a pop-up button in a single object.

Adding a Combo Box to Your User Interface
To create a combo box on your user interface, follow these steps:

1. Double-click the .xib user interface file that contains the window to which you

want to add a combo box. Interface Builder appears.

2. Choose Tools ➤ Library to display the Object Library.

3. Scroll through the Object Library and look for the Combo Box object, as shown in

Figure 18–10.

CHAPTER 18: Inputting and Outputting Data with Labels, Text Fields, and Combo Boxes 291

Figure 18–10. The Combo Box object in the Object Library

4. Drag the Combo Box object from the Object Library and drop it on your user

interface.

Now that the combo box is in place, you can create a list for it.

CHAPTER 18: Inputting and Outputting Data with Labels, Text Fields, and Combo Boxes 292

Creating a List for a Combo Box
A combo box, like a pop-up button, can store multiple choices that the user can view

and select. To fill a combo box with choices, you just need to use the

addItemsWithObjectValues method:

 NSString *object1 = @"Electric trains";
 NSString *object2 = @"Bicycles";
 NSString *object3 = @"Video games";
 NSString *object4 = @"Skateboards";
 NSMutableArray *myArray;
 myArray= [NSMutableArray arrayWithObjects: object1, object2, object3, object4, nil];

 [myCombo addItemsWithObjectValues: myArray];

The first four lines simply define four different string objects. The fifth line declares

myArray as an NSMutableArray. Then the next line stuffs the four string objects into

myArray.

The last line assumes that you have created a myCombo variable to represent the

NSComboBox. This last line uses the addItemsWithObjectValues method to store the

myArray list in the myCombo variable.

NOTE: After storing data into a variable, the final step to make this data appear in a combo box is

to connect the myCombo variable to the actual combo box on your user interface.

Retrieving a Value from a Combo Box
Whether the user types in data or selects from a combo box’s list of choices, you can

retrieve that data through the combo box’s stringValue property. A combo box is an

object created from the NSComboBox class. However, the portion of the combo box that

holds the data typed in or selected is the NSComboBoxCell class, which is derived from

the NSTextField class.

To retrieve data from a combo box, you must first declare an IBOutlet variable as an

NSComboBox in a header (.h) file:

@interface MyTestAppDelegate : NSObject <NSApplicationDelegate> {
 NSWindow *window;
 NSComboBox *myCombo;
 }

@property (retain) IBOutlet NSComboBox *myCombo;
@end

Next, in the implementation (.m) file, you need to use the @synthesize command:

@synthesize myCombo;

CHAPTER 18: Inputting and Outputting Data with Labels, Text Fields, and Combo Boxes 293

Finally, you need to connect the variable (myCombo) to your actual combo box on the user

interface. Now whatever value appears in the combo box will get stored in the myCombo
stringValue property.

To see how to fill a combo box with data and retrieve the user’s selection (or typed in

data), follow these steps:

1. Open the MyTest program that you modified in the previous section.

2. Double-click the MainMenu.xib file stored in the Resources folder. Interface

Builder appears and displays your user interface window.

3. Click any items currently displayed on the user interface and press Delete to

remove them.

4. Drag and drop one Combo Box object on your user interface window.

5. Click the MyTestAppDelegate.h file stored in the Classes folder and modify the

code as follows:

#import <Cocoa/Cocoa.h>

@interface MyTestAppDelegate : NSObject <NSApplicationDelegate> {
 NSWindow *window;
 NSComboBox *myCombo;
}

@property (retain) IBOutlet NSWindow *window;
@property (retain) IBOutlet NSComboBox *myCombo;

-(IBAction)displayMessage:(id)sender;

@end

6. Choose File ➤ Save or press S to save your changes.

7. Click the MyTestAppDelegate.m file stored in the Classes folder and modify the

code as follows:

#import "MyTestAppDelegate.h"

@implementation MyTestAppDelegate

@synthesize window;
@synthesize myCombo;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 // Insert code here to initialize your application

 NSString *object1 = @"Electric trains";
 NSString *object2 = @"Bicycles";
 NSString *object3 = @"Video games";
 NSString *object4 = @"Skateboards";
 NSMutableArray *myArray;
 myArray= [NSMutableArray arrayWithObjects: object1, object2, object3, object4, nil];

CHAPTER 18: Inputting and Outputting Data with Labels, Text Fields, and Combo Boxes 294

 [myCombo addItemsWithObjectValues: myArray];

}

- (void)dealloc {
 [myCombo release];
 [window release];
 [super dealloc];
}

-(IBAction)displayMessage:(id)sender
{
 NSLog (@"Selected item = %@", myCombo.stringValue);
}

@end

8. Choose File ➤ Save or press S to save your changes.

9. Double-click the MainMenu.xib file stored in the Resources folder. Interface

Builder appears and displays your user interface window.

10. Right-click the My Test App Delegate icon. A heads-up window appears.

11. Click the circle that appears to the right of myCombo under the Outlets heading and

drag and drop it over the combo box on the user interface, as shown in Figure

18–11.

Figure 18–11. Connecting the myCombo IBOutlet variable to the combo box on the user interface

CHAPTER 18: Inputting and Outputting Data with Labels, Text Fields, and Combo Boxes 295

12. Connect displayMessage (under Received Actions) to the combo box on the user

interface.

13. Choose File ➤ Save or press S to save your changes.

14. Switch to Xcode and click the Build and Run button or choose Build ➤ Build and

Run. As long as you didn’t mistype anything, you should see a blank window pop

up.

15. Click the combo box and select an option such as Electric trains.

16. Click the combo box a second time and type some text, such as Teddy bear, and

press Return.

17. Quit your program by choosing MyTest ➤ Quit.

18. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-09-22 14:22:44.802 UITest[4027:a0f] Selected item = Electric trains
2010-09-22 14:22:53.758 UITest[4027:a0f] Selected item = Teddy bear

This program shows how to retrieve data from a combo box whether the user selects a

choice from the combo box’s menu or types in new data. By giving users the ability to

select a choice from a pull-down menu or type something else instead, a combo box

combines the flexibility of a text field with a pop-up button’s list of fixed choices in a

menu.

Wrapping Labels and Text Fields
Text fields and labels typically display a single line of text. If you want to display multiple

lines, you need to use a Wrapping Label object or Wrapping Text Field object, either of

which lets you resize its height to handle multiple lines of text. The Wrapping Label and

Wrapping Text Field objects appear next to each other in the Object Library, as shown in

Figure 18–12.

Figure 18–12. The Wrapping Label and Wrapping Text Field objects in the Object Library

CHAPTER 18: Inputting and Outputting Data with Labels, Text Fields, and Combo Boxes 296

To display text on either a wrapping label or wrapping text field, you can double-click

that object directly in Interface Builder and then type whatever text you want to appear

in the wrapping label or wrapping text field.

If you want to change the text in a wrapping label or wrapping text field through

Objective-C code, you need to define an NSTextField property variable in a header (.h)

file:

#import <Cocoa/Cocoa.h>

@interface MyTestAppDelegate : NSObject <NSApplicationDelegate> {
 NSWindow *window;
 NSTextField *bigText;
 NSTextField *labelText;
}

@property (retain) IBOutlet NSWindow *window;
@property (retain) IBOutlet NSTextField *bigText;
@property (retain) IBOutlet NSTextField *labelText;

@end

Then add the @synthesize command in the implementation (.m) file like this:

@synthesize bigText;
@synthesize labelText;

After you connect these NSTextField properties to a wrapping label and wrapping text

field on your user interface, you’ll be able to put text into either object using its

stringValue property:

labelText.stringValue = @"This text can appear inside a Wrapping Label";
bigText.stringValue = @"This text can appear in a Wrapping Text Field";

You can just as easily retrieve the text stored in a wrapping label or a wrapping text field

by using the stringValue property again:

NSLog (@"Wrapping Label text = %@", labelText.stringValue);
NSLog (@"Wrapping Text Field contents = %@", bigText.stringValue);

Summary
Labels are handy for displaying text to identify parts of your user interface or just to

provide instructions or information for the user to read. Text fields are designed to allow

the user to type in text so that your program can retrieve and manipulate that data.

If you need to display multiple lines of text, you can use a Wrapping Label object or a

Wrapping Text Field object. With both labels and text fields, you can double-click the

object directly on your user interface and type text that you want to appear on that label

or text field; you can modify the Title property of each item via the Attributes Inspector;

or you can assign a string to the label’s stringValue property using Objective-C code.

Double-clicking and typing directly on the label or text field may be the simplest method,

but using the Object Attributes window for a text field lets you define placeholder text,

CHAPTER 18: Inputting and Outputting Data with Labels, Text Fields, and Combo Boxes 297

which appears dimmed to display a brief description of what type of information the user

needs to type into that text field.

A combo box combines the features of a text field with a pop-up button, allowing users

to either select from a list of choices or type in their own option. With the combo box,

labels, and text fields, you must always connect your IBOutlet variables to the actual

user interface item.

Labels, text fields, and combo boxes provide different ways to display information to the

user and (for text fields and combo boxes) accept data from the user.

CHAPTER 18: Inputting and Outputting Data with Labels, Text Fields, and Combo Boxes 298

299

299

 Chapter

Inputting Data with
Sliders, Date Pickers, and
Steppers
When you need to let the user choose from a limited list of options, radio buttons, check
boxes, and pop-up buttons will work just fine. When you need to let the user type in
data, a text field or combo box will be a better choice. However, if you want the user to
select a numeric value, a predefined list of options may be too limited and clumsy, and
forcing the user to type in a number might not work if you want to restrict the number to
a specific range. In this case, you may want to use a horizontal, vertical, or circular
slider.

A slider lets you define a minimum and maximum value so the user can choose any
number in between by moving the slider up and down or left and right. Sliders also let
you define increments, such as allowing the user to select only even numbers or only
numbers in increments of 0.5.

Another way to let the user input numeric values is to use a stepper, which looks like a
tiny up and down arrow. Like a slider, a stepper lets you define a minimum and
maximum value along with an increment value, so you could make the stepper count by
ones, threes, fives, or any number you want.

Sliders and steppers can help users input a numeric value, but sometimes you may
need the user to input a date. You could let the user type that information into a text
field, but then you’ll have the problem of enforcing a specific format, such as August 10,
2012 or 8/10/12. If the user misspells a month or uses dashes instead of slashes (8-10-
12), your program might get confused if it doesn't expect anyone to type in a data using
dashes.

To avoid this problem, you can use an object called a date picker. Instead of forcing
users to type a date, a date picker displays a calendar so users can pick a date without

19

CHAPTER 19: Inputting Data with Sliders, Date Pickers, and Steppers 300

typing. A date picker makes choosing dates convenient for the user while also
simplifying receiving dates for your program.

The main purpose of all these controls is to prevent the user from giving your program
invalid information, such as typing “Twelve” instead of using the number 12. By
preventing the user from entering invalid data, your user interface can protect your
program from crashing due to unexpected data, which increases the reliability of your
program.

Using Sliders
The main purpose of a slider is to let the user drag it to select a value. The following are
the three types of sliders, as shown in Figure 19–1:

 Horizontal

 Vertical

 Circular

Figure 19–1. The three types of sliders

To create a slider, follow these steps:

1. Open a .xib user interface file in Interface Builder.

2. Choose Tools ➤ Library to open the Library window.

3. Drag the Horizontal Slider object, Vertical Slider object, or Circular Slider object

from the Object Library (as shown in Figure 19–2) and drop it on your user

interface window.

CHAPTER 19: Inputting Data with Sliders, Date Pickers, and Steppers 301

Figure 19–2. The three types of sliders in the Object Library

Defining Values
For every slider, you can define a Minimum, Maximum, and Current value. The Minimum
value represents the lowest value the slider (left on a horizontal slider or bottom on a
vertical slider) can return. The Maximum value represents the highest value the slider
(right on a horizontal slider or top on a vertical slider) can return.

CHAPTER 19: Inputting Data with Sliders, Date Pickers, and Steppers 302

The Current value defines the value displayed on the slider. By modifying this value, you
can set the slider’s position. You can set all three values in the slider’s Attributes
Inspector window, shown in Figure 19–3, which you can open by clicking a slider and
then choosing Tools ➤ Attributes Inspector.

Figure 19–3. The Minimum, Maximum, and Current values of a slider

Displaying Tick Marks
Tick marks can appear above or below a horizontal slider, on the left or right side of a
vertical slider, or around the edges of a circular slider, as shown in Figure 19–4.

Figure 19–4. Tick marks around, below, and to the right of three sliders

When displaying tick marks, you can choose in which position (above/below, left/right,
around) you want the tick marks to appear for a slider, the number of tick marks to
display, and whether you want to restrain the slider to move only in increments defined
by the tick marks. To define the appearance of tick marks, you need to modify the
following in the slider’s Attributes Inspector window (see Figure 19–3):

CHAPTER 19: Inputting Data with Sliders, Date Pickers, and Steppers 303

 The position of the tick marks

 Number of tick marks to display (this value must be 1 or greater to
display tick marks)

 Whether the slider can move only in increments defined by the tick
marks

Retrieving and Displaying a Slider’s Value
When the user manipulates a slider, the slider constantly changes its current value.
However, you won’t be able to see this change in value unless you display that value in
another object such as a label.

To use a label to display a slider’s current value, you need to follow these steps:

1. Double-click on the MainMenu.xib file in the Resources file to open Interface

Builder.

2. Choose Tools ➤ Library to open the Library window.

3. Drag one Label object and one Slider object from the Object Library and drop

them on the user interface window.

4. Right-click the Label object to display a heads-up window.

5. Click the circle that appears to the right of takeIntegerValueFrom under the

Received Actions category and drag and drop it on the slider object, as shown in

Figure 19–5. (If you wanted the label to display decimal numbers, you would drag

the takeFloatValueFrom circle to the slider instead.)

CHAPTER 19: Inputting Data with Sliders, Date Pickers, and Steppers 304

Figure 19–5. Dragging the takeIntegerValueFrom circle to a slider links that slider’s value to the label.

6. Choose File ➤ Save or press ! S to save your changes.

7. Switch to Xcode and click the Build and Run button or choose Build ➤ Build and
Run.

8. Drag the slider. Notice that the current value of the slider now appears inside your
label.

9. Quit your program.such as pressing ! Q.

NOTE: A circular slider works identically to how a horizontal or vertical slider works, except that

the user must spin the slider around to change its value.

CHAPTER 19: Inputting Data with Sliders, Date Pickers, and Steppers 305

Using a Date Picker
A date picker lets the user enter a date and time by clicking a choice instead of typing
the whole date or time in. There are three ways to display a date picker, as shown in
Figure 19–6:

 Textual: Displays a text field that automatically formats dates and
times

 Textual with Stepper: Displays dates and times that allow you to
increase/decrease the month, day, and year using the stepper
(up/down arrows)

 Graphical: Displays a monthly calendar and a clock

Figure 19–6. The three different appearances for a date picker.

To create a date picker, follow these steps:

1. Open a .xib user interface file in Interface Builder.

2. Choose Tools ➤ Library to open the Library window.

CHAPTER 19: Inputting Data with Sliders, Date Pickers, and Steppers 306

3. Drag the Date Picker object from the Object Library (as shown in Figure 19–7) and

drop it on your user interface window.

Figure 19–7. The Date Picker object in the Object Library

After you create a date picker, you can modify one or more of the following by clicking
the Date Picker object and opening its Attributes Inspector window (by choosing Tools
➤ Attributes Inspector), as shown in Figure 19–8:

CHAPTER 19: Inputting Data with Sliders, Date Pickers, and Steppers 307

 Style: Defines how to display the date picker (Textual, Textual with
Stepper, or Graphical)

 Selects: Defines whether the user can select only a single date or a
range of dates

 Elements: Defines whether to include the month, day, and year along
with hours, minutes, and seconds

 Date: Determines the currently displayed date

 Minimum Date: Defines the earliest valid date

 Maximum Date: Defines the latest possible valid date

 Display: Defines whether a background color and/or border appears
around the calendar

 Text: Defines the color of text displayed on the date picker

 Background: Defines the background color of the date picker

Figure 19–8. The properties you can modify for a date picker

CHAPTER 19: Inputting Data with Sliders, Date Pickers, and Steppers 308

Retrieving a Date from a Date Picker
To retrieve a date from a date picker, you need to declare an NSDatePicker variable in a
header (.h) file:

NSDatePicker *myDate;

@property (retain) IBOutlet NSDatePicker *myDate;

Then, use the @synthesize command in the implementation (.m) file:

@synthesize myDate;

You need to connect this myDate variable to the actual date picker on your user
interface. Now if you want to retrieve the value from the date picker, you just need to use
the dateValue property:

myDate.dateValue

To see how to use a date picker, follow these steps:

1. Open the MyTest program that you modified in the previous chapter.

2. Double-click the MainMenu.xib file stored in the Resources folder. Interface

Builder appears and displays your user interface window.

3. Click any items currently displayed on the user interface and press Delete to

remove them.

4. Drag and drop one Push Button object and one Date Picker object on your user

interface window.

5. Click the Date Picker object and choose Tools ➤ Attributes Inspector to display

the Attributes Inspector window.

6. Click the Style pop-up button and choose Graphical, as shown in Figure 19–9.

Figure 19–9. The Graphical option in the Attributes Inspector window

7. Click the Selects pop-up button and choose Single Date.

8. Under the Elements category, select the Month, Day, and Year radio button and

the Hour, Minute, and Second radio button.

CHAPTER 19: Inputting Data with Sliders, Date Pickers, and Steppers 309

9. Click the MyTestAppDelegate.h file stored in the Classes folder and modify the

code as follows:

#import <Cocoa/Cocoa.h>

@interface MyTestAppDelegate : NSObject <NSApplicationDelegate> {
 NSWindow *window;

 NSDatePicker *myDate;
 }

@property (retain) IBOutlet NSWindow *window;
@property (retain) IBOutlet NSDatePicker *myDate;

-(IBAction) displayDate:(id)sender;

@end

10. Choose File ➤ Save or press ! S to save your changes.

11. Click the MyTestAppDelegate.m file stored in the Classes folder and modify the

code as follows:

#import "MyTestAppDelegate.h"

@implementation MyTestAppDelegate

@synthesize window;
@synthesize myDate;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 // Insert code here to initialize your application
}

- (void)dealloc {
 [myDate release];
 [window release];
 [super dealloc];
}

-(IBAction) displayDate:(id)sender
{
 NSLog (@"Date = %@", myDate.dateValue);
}

@end

12. Choose File ➤ Save or press ! S to save your changes.

13. Double-click the MainMenu.xib file stored in the Resources folder. Interface

Builder appears and displays your user interface window.

14. Right-click the My Test App Delegate icon in the MainMenu.xib window. A heads-

up window appears.

CHAPTER 19: Inputting Data with Sliders, Date Pickers, and Steppers 310

15. Click the circle that appears to the right of myDate under the Outlets heading and

drag and drop it over the date picker on the user interface.

16. Click the circle that appears to the right of displayDate (under Received Actions)

and drag and drop it over the push button on the user interface.

17. Choose File ➤ Save or press ! S to save your changes.

18. Switch to Xcode and click the Build and Run button or choose Build ➤ Build and

Run. As long as you didn’t mistype anything, you should see a blank window pop

up.

19. Click a date displayed by the date picker.

20. Click a time displayed by the date picker.

21. Click the push button.

22. Quit your program.

23. Choose Run ➤ Console or press " ! R. You should see the printed statements

created by the NSLog command:

2010-09-24 16:32:36.299 UITest[13123:a0f] Date = 2011-02-01 08:00:00 -0800

Using Steppers
A stepper lets the user increment a value by a fixed amount, such as 1. A stepper lets
the user select from a range of valid values but takes up less space than a slider.

To create a stepper, follow these steps:

1. Open a .xib user interface file in Interface Builder.

2. Choose Tools ➤ Library to open the Library window.

3. Drag the Stepper object from the Object Library (as shown in Figure 19–10) and

drop it on your user interface window.

CHAPTER 19: Inputting Data with Sliders, Date Pickers, and Steppers 311

Figure 19–10. The Stepper object in the Object Library

After you create a stepper, you can modify one or more of the following, as shown in
Figure 19–11:

 Value Wraps: Defines whether the stepper stops when its minimum or
maximum value is reached (unchecked) or “wraps around” and allows
the stepper to jump from the minimum value to the maximum value
and vice versa (checked)

CHAPTER 19: Inputting Data with Sliders, Date Pickers, and Steppers 312

 Auto Repeats: Defines whether the user can hold down the stepper’s
up or down arrow to keep incrementing (checked) or must click the
stepper up/down arrow each time to increment/decrement the value
(unchecked)

 Minimum: Defines the minimum value

 Maximum: Defines the maximum value

 Increment: Defines the increment by which the stepper
increases/decreases its value each time the user clicks the up/down
arrow

 Current: Determines the current value stored in the stepper

Figure 19–11. Defining the behavior of a stepper in the Attributes Inspector window

One problem with the stepper is that as you click to change its value, you can’t see your
changes. To display your changes, you can link a Label object to the Stepper object so
that the value always appears in the Label.

In case you need to retrieve the value from the stepper, you can use the doubleValue
property:

myStepper.doubleValue

To see how to use a stepper, follow these steps:

4. Open the MyTest program that you modified in the previous section.

5. Double-click the MainMenu.xib file stored in the Resources folder. Interface

Builder appears and displays your user interface window.

6. Click any items currently displayed on the user interface and press Delete to

remove them.

7. Drag one Push Button object, one Label object, and one Stepper object and drop

them on your user interface window.

CHAPTER 19: Inputting Data with Sliders, Date Pickers, and Steppers 313

8. Click the Stepper object and choose Tools ➤ Attributes Inspector to display the

Attributes Inspector window.

9. Click to select the Value Wraps check box. (If the Auto Repeats check box is

clear, click to select it.)

10. Click in the Maximum text field, type 5, and press Return.

11. Click the MyTestAppDelegate.h file stored in the Classes folder and modify the

code as follows:

#import <Cocoa/Cocoa.h>

@interface MyTestAppDelegate : NSObject <NSApplicationDelegate> {
 NSWindow *window;

 NSStepper *myValue;
 }

@property (retain) IBOutlet NSWindow *window;
@property (retain) IBOutlet NSStepper *myValue;

-(IBAction) displayValue:(id)sender;

@end

12. Choose File ➤ Save or press ! S to save your changes.

13. Click the MyTestAppDelegate.m file stored in the Classes folder and modify the

code as follows:

#import "MyTestAppDelegate.h"

@implementation MyTestAppDelegate

@synthesize window;
@synthesize myValue;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 // Insert code here to initialize your application
}

- (void)dealloc {
 [myValue release];
 [window release];
 [super dealloc];
}

-(IBAction) displayValue:(id)sender
{
 NSLog (@" Value = %f", myValue.doubleValue);
}

@end

14. Choose File ➤ Save or press ! S to save your changes.

CHAPTER 19: Inputting Data with Sliders, Date Pickers, and Steppers 314

15. Double-click the MainMenu.xib file stored in the Resources folder. Interface

Builder appears and displays your user interface window.

16. Right-click the My Test App Delegate icon in the MainMenu.xib window. A heads-

up window appears.

17. Click the circle that appears to the right of myValue under the Outlets heading and

drag and drop it over the stepper on the user interface.

18. Click the circle that appears to the right of displayValue (under Received Actions)

and drag and drop it over the push button on the user interface.

19. Right-click the label on your user interface window. A heads-up window appears.

20. Click the circle that appears to the right of takeDoubleValueFrom and drag and

drop it over the stepper on the user interface. This links the label to the value of

the stepper.

21. Choose File ➤ Save or press ! S to save your changes.

22. Switch to Xcode and click the Build and Run button or choose Build ➤ Build and

Run. As long as you didn’t mistype anything, you should see a blank window pop

up.

23. Click the up or down arrow on the stepper. Notice that the value appears in the

label.

24. Click the push button.

25. Quit your program.

26. Choose Run ➤ Console or press " ! R. You should see the printed statements

created by the NSLog command:

2010-09-24 18:50:59.519 UITest[13551:a0f] Value = 4.000000

Summary
Sliders and steppers let the user select a numeric value that falls within a fixed range. To
display the value of a slider or stepper, you may need to link a label to the slider or
stepper so that the value always appears on the label, making it visible to the user.

The date picker lets the user select a date by either typing in an actual numeric value or
clicking a displayed date. Sliders, steppers, and date pickers are just a few of the ways
to provide a limited number of valid choices that the user can select.

315

315

 Chapter

Using Built-In Dialog
Boxes
Apple provides plenty of prewritten and tested code you can reuse from the Cocoa

framework. Besides letting you create a program faster, prewritten code also ensures

that your program looks and behaves like a typical Mac program. One of the common

elements of every Mac program are dialog boxes, which are windows that pop up and

allow the user to print, open, or save a file. Rather than force you to create these

common user interface elements yourself, Apple provides you with built-in dialog boxes

that you can plug into your own program.

One common built-in dialog box is an alert panel that pops up on the screen to alert the

user to something, such as confirming that the computer is about to delete a file if the

user confirms this delete action. Another common type of dialog box display is an Open

or Save dialog box that lets the user select a folder and a file. By using these common

user interface items in your programs, you can create programs that look and behave

just like Apple’s own programs such as iPhoto and iTunes.

Using Alert Dialog Boxes
An alert dialog is used whenever your program needs to bring something to the user’s

attention. To use an alert dialog box, you need to create and customize it, display it on

the screen, and then retrieve any choices that the user made, such as clicking an OK or

Cancel button.

The first step in creating an alert dialog box is to define a pointer to the NSAlert class

and then initialize that pointer like this:

NSAlert *alert = [[NSAlert alloc] init];

After creating an alert dialog box, the next step is to define the type of dialog box to

display, as shown in Figure 20–1. The following are the three types of alert dialog boxes:

20

CHAPTER 20: Using Built-In Dialog Boxes 316

 NSWarningAlertStyle: Displays the default style used to warn the user

about an impending event

 NSInformationalAlertStyle: Creates a dialog box to warn the user of

an event; looks identical to the NSWarningAlertStyle

 NSCriticalAlertStyle: Displays a caution icon, used to caution the

user about an event that could have consequences

Figure 20–1. The appearance of the different dialog box styles

To define the type of dialog box style, just use alertStyle and specify the style you

want to use like this:

NSAlert *alert = [[NSAlert alloc] init];
alert.alertStyle = NSWarningAlertStyle;

NOTE: The icon displayed in a dialog box is the icon assigned to your program. If you do not

assign an icon to your program, the icon will be the default application icon (see Figure 20–1).

To make the alert dialog box actually appear (and release its memory usage when it’s

done), you need to add two additional lines of code:

NSAlert *alert = [[NSAlert alloc] init];
alert.alertStyle = NSWarningAlertStyle;
[alert runModal];
[alert release];

The [alert runModal] line makes your dialog box actually appear on the screen. While

these four lines create and display a dialog box, you’ll probably want to customize the

dialog box with text and buttons, which the following sections explain.

CHAPTER 20: Using Built-In Dialog Boxes 317

Displaying Text on a Dialog Box
By default, a dialog box simply displays the word “Alert.” To customize a dialog box,

you can define message text and informative text. Message text appears in bold to

catch the user’s eye, while informative text appears underneath and provides additional

explanation about the dialog box’s message, as shown in Figure 20–2.

Figure 20–2. The appearance of message and informative text on a dialog box

After you’ve created a dialog box, you can use messageText and informativeText to

define the text to display on your dialog box:

alert.messageText = @"Message Text";
alert.informativeText = @"Informative Text";

Displaying a Suppression Check Box
If you’ve ever used a new browser for the first time, you may have seen a dialog box pop

up asking if you want to make the browser your default browser. This dialog box lets you

click Yes or No, but it also includes a check box called a suppression check box, which

you can check to make sure the dialog box doesn’t keep popping up again and again,

as shown in Figure 20–3.

Figure 20–3. The suppression check box displays “Do not show this message again.”

To create a suppression check box, use suppressionButton and set it to YES:

alert.showsSuppressionButton: = YES;

CHAPTER 20: Using Built-In Dialog Boxes 318

Displaying Buttons on a Dialog Box
By default, a dialog box appears with only an OK button (see Figure 20–2). If you just

need to alert the user about something noncritical, the user can acknowledge getting

that message and remove the dialog box by clicking the OK button.

However, many times you may want to display more than one button and display

custom text on each button. To do both, you need to use the addButtonWithTitle

method and define the text that you want to appear on the button:

[alert addButtonWithTitle:@"OK"];

The first button you add to a dialog box appears on the far right. Each additional button

you add appears to the left of the preceding button. Generally you don’t want to use

more than three or four buttons because then the dialog box starts to get cluttered and

more confusing.

When the user clicks any button displayed on the dialog box, the dialog box immediately

disappears. If you have two or more buttons displayed on the dialog box, you may want

to know which button the user chose.

To determine the button that the user clicked, you can use a switch statement along

with the NSAlertFirstButtonReturn, NSAlertSecondButtonReturn, and

NSAlertThirdButtonReturn constants:

switch ([alert runModal])
 {
 case NSAlertFirstButtonReturn:
 NSLog (@"First button clicked");
 break;

 case NSAlertSecondButtonReturn:
 NSLog (@"Second clicked");
 break;

 case NSAlertThirdButtonReturn:
 NSLog (@"Third clicked");
 break;

 default:
 break;
 }

The [alert runModal] command displays the dialog box. The first button on the dialog

box is the button on the far right, the second button is the button that appears to the left

of the first button, and so on, as shown in Figure 20–4.

CHAPTER 20: Using Built-In Dialog Boxes 319

Figure 20–4. Identifying the first, second, and third buttons on a dialog box

If you have more than three buttons on a dialog box, you can identify each additional

button by checking for NSAlertThirdButton + x, where x is a number that represents an

additional button beyond the third one.

To see how to create and display a dialog box, follow these steps:

1. Open the MyTest program that you modified in the previous chapter.

2. Double-click the MainMenu.xib file stored in the Resources folder. Interface

Builder appears and displays your user interface window.

3. Click any items currently displayed on the user interface and press Delete to

remove them.

4. Drag and drop one Push Button object on your user interface window.

5. Click the MyTestAppDelegate.h file stored in the Classes folder and modify the

code as follows:

#import <Cocoa/Cocoa.h>

@interface MyTestAppDelegate : NSObject <NSApplicationDelegate> {
 NSWindow *window;
}

@property (retain) IBOutlet NSWindow *window;

-(IBAction) displayDialog:(id)sender;

@end

6. Choose File ➤ Save or press S to save your changes.

7. Click the MyTestAppDelegate.m file stored in the Classes folder and modify the

code as follows:

#import "MyTestAppDelegate.h"

@implementation MyTestAppDelegate

@synthesize window;

CHAPTER 20: Using Built-In Dialog Boxes 320

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 // Insert code here to initialize your application

}

- (void)dealloc {

 [window release];
 [super dealloc];
}

-(IBAction) displayDialog:(id)sender
{
 NSAlert *alert = [[NSAlert alloc] init];
 alert.salertStyle = NSWarningAlertStyle;

 [alert addButtonWithTitle:@"OK"];
 [alert addButtonWithTitle:@"Cancel"];

 alert.messageText = @"Message Text";
 alert.informativeText = @"Informative Text";

 switch ([alert runModal])
 {
 case NSAlertFirstButtonReturn:
 NSLog (@"OK clicked");
 break;

 case NSAlertSecondButtonReturn:
 NSLog (@"Cancel clicked");
 break;

 default:
 break;
 }

 [alert release];
}

@end

NOTE: After you create an alert dialog box, you need to use the release method (such as
[alert release];) to remove the object from memory. If you fail to do this, each time the
user opens the dialog box, it will gobble up memory and eventually could cause your program to

crash when there’s no more memory available.

8. Choose File ➤ Save or press S to save your changes.

9. Double-click the MainMenu.xib file stored in the Resources folder. Interface

Builder appears and displays your user interface window.

CHAPTER 20: Using Built-In Dialog Boxes 321

10. Right-click the My Test App Delegate icon in MainMenu.xib window. A heads-up

window appears.

11. Click the circle that appear to the right of displayDialog under the Received

Actions heading and drag the mouse to the push button on the user interface.

12. Choose File ➤ Save or press S to save your changes.

13. Switch to Xcode and click the Build and Run button or choose Build ➤ Build and

Run. As long as you didn’t mistype anything, you should see a blank window pop

up.

14. Click the push button. Your dialog box appears.

15. Click the OK button. The dialog box disappears.

16. Repeat steps 14 and 15 except click the Cancel button.

17. Quit your program.

18. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-09-25 22:44:52.232 UITest[19293:a0f] OK clicked
2010-09-25 22:44:54.426 UITest[19293:a0f] Cancel clicked

Creating an Open Panel
Many Mac programs need to let the user choose a file stored on a computer. To present

this option in a consistent way, almost every Mac program uses a special window called

an Open panel, as shown in Figure 20–5.

CHAPTER 20: Using Built-In Dialog Boxes 322

Figure 20–5. An Open panel lets you select files on a computer.

To create an Open panel, you need to use the NSOpenPanel class like this:

NSOpenPanel *myPanel = [NSOpenPanel openPanel];

This creates an Open panel, but you still need to display it and determine which button

the user clicked (NSOKButton or NSCancelButton) and which file the user selected.

To display an Open panel, you need to use the runModal method, which looks like this:

[myPanel runModal];

This line of code returns an integer value that identifies which button the user clicked to

make the Open panel disappear. To identify which button the user clicked (Open or

Cancel), you need to check if the value of [myPanel runModal] is equal to the constant

value NSOKButton (which represents the Open button):

if ([myPanel runModal] == NSOKButton)
 {
 // If the user selected a file, retrieve that file name
 }

If the user clicked the Cancel button, then there’s no need to do anything else. However,

if the user clicked the Open button (identified by the NSOKButton constant), then the user

must have also selected a file from the Open panel.

CHAPTER 20: Using Built-In Dialog Boxes 323

To retrieve this file name (plus its directory path), you must use the URLs property,

which contains an array of all the files that the user selected. (Most users will select only

a single file, but it’s possible to allow the user to select multiple files.) To use the URLs

property, you must declare an NSArray like this:

NSArray *filenamesArray = myPanel.URLs;

Once the list of selected file names gets stored in an array, the second step is to retrieve

each file name from this array. If the Open panel allowed the user to select only a single

file, then you need to retrieve only the first item in the array, located at index position 0:

NSString *filename = [filenamesArray objectAtIndex:0];

The string stored in the filename string now identifies the file name (and directory path)

of the file that the user chose.

To see how to create and display an Open panel, follow these steps:

1. Open the MyTest program that you modified in the previous section.

2. Double-click the MainMenu.xib file stored in the Resources folder. Interface

Builder appears and displays your user interface window.

3. Click any items currently displayed on the user interface and press Delete to

remove them.

4. Drag and drop one Push Button object on your user interface window.

5. Click the MyTestAppDelegate.h file stored in the Classes folder and modify the

code as follows:

#import <Cocoa/Cocoa.h>

@interface MyTestAppDelegate : NSObject <NSApplicationDelegate> {
 NSWindow *window;
 }

@property (retain) IBOutlet NSWindow *window;

-(IBAction) displayPanel:(id)sender;

@end

6. Choose File ➤ Save or press S to save your changes.

7. Click the MyTestAppDelegate.m file stored in the Classes folder and modify the

code as follows:

#import "MyTestAppDelegate.h"

@implementation MyTestAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 // Insert code here to initialize your application

CHAPTER 20: Using Built-In Dialog Boxes 324

}

- (void)dealloc {

 [window release];
 [super dealloc];
}

-(IBAction) displayPanel:(id)sender
{
 NSOpenPanel *myPanel = [NSOpenPanel openPanel];

 if ([myPanel runModal] == NSOKButton)
 {
 NSArray *files = myPanel.URLs;
 NSURL *filename = [files objectAtIndex:0];
 NSLog (@"File = %@", filename);
 }
}

@end

8. Choose File ➤ Save or press S to save your changes.

9. Double-click the MainMenu.xib file stored in the Resources folder to open

Interface Builder.

10. Click the Window (My Test) icon in the MainMenu.xib window. Your user interface

window appears.

11. Right-click the My Test App Delegate icon. A heads-up window appears.

12. Click the circle that appears to the right of displayPanel under the Received

Actions category and drag it to the push button on the user interface.

13. Choose File ➤ Save or press S to save your changes.

14. Switch to Xcode and click the Build and Run button or choose Build ➤ Build and

Run. As long as you didn’t mistype anything, you should see a blank window pop

up.

15. Click the push button. The Open panel appears.

16. Click a file (open up different folders if you wish), and click the Open button.

17. Quit your program.

18. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-09-26 20:48:21.314 UITest[21836:a0f] File = /Users/JohnDoe/Documents/About
Stacks.pdf

CHAPTER 20: Using Built-In Dialog Boxes 325

Limiting File Types
The Open panel normally displays every file type on your computer. However, you can

limit the Open panel to make available only certain types of files, such as PDF or

Microsoft Word (.doc and .docx) files.

To define the types of files to allow the user to select, you must first create an array that

lists all the file extensions that define all the files you want to allow the user to select,

such as in this example:

NSArray *fileTypes = [NSArray arrayWithObjects:@"doc", @"pdf", nil];

This code would force the Open panel to display only .doc or .pdf files. Any file with a

different file extension, such as .tif or .jpg, would appear dimmed so the user can’t

select it. By limiting the types of files the user can select, you can ensure that the user

won’t select an inappropriate file that won’t work in your program.

After you’ve defined a list of acceptable file extensions, the next step is to tell the Open

panel which files are acceptable by using the allowedFilesTypes property like this:

NSArray *fileTypes = [NSArray arrayWithObjects:@"doc", @"jpg", @"pdf", nil];
myPanel.allowedFileTypes = fileTypes;

Allowing Multiple File Selections
In most cases, you may want the user to select only a single file from the Open panel.

However, you can let the user select multiple files, by holding down the key while

clicking each file to select. To allow the user to select multiple files, you need to turn on

this multiple selection option by using the setAllowsMultipleSelection method like this:

[myPanel setAllowsMultipleSelection:YES];

When you allow the user to select multiple files, you have no idea how many files the

user might have selected. To retrieve each file name, you must use a loop that keeps

retrieving each selected file name until it finds them all:

if ([myPanel runModal] == NSOKButton)
 {
 NSArray *filenamesArray = myPanel.URLs;
 for (NSURL *element in filenamesArray) {
 NSLog(@"File = %@", element);
 }
 }

The for loop keeps repeating until it retrieves all the file names from filenamesArray,

which holds the list of the multiple files the user selected.

To see how to limit the file types the user can select and allow the user to select multiple

files, follow these steps:

1. Open the MyTest program that you modified in the previous section.

CHAPTER 20: Using Built-In Dialog Boxes 326

2. Double-click the MainMenu.xib file stored in the Resources folder. Interface

Builder appears and displays your user interface window. One push button should

appear on the user interface. If not, delete anything currently displayed and then

drag and drop one Push Button object on the user interface window.

3. Click the MyTestAppDelegate.m file stored in the Classes folder and modify the

code as follows:

#import "MyTestAppDelegate.h"

@implementation MyTestAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 // Insert code here to initialize your application
}

- (void)dealloc {

 [window release];
 [super dealloc];
}

-(IBAction) displayPanel:(id)sender
{

 NSOpenPanel *myPanel = [NSOpenPanel openPanel];

 NSArray *fileTypes = [NSArray arrayWithObjects:@"doc", @"jpg", @"pdf", nil];
 myPanel.allowedFileTypes = fileTypes;

 myPanel.allowsMultipleSelection = YES;

 if ([myPanel runModal] == NSOKButton)
 {
 NSArray *filenamesArray = myPanel.URLs;
 for (NSURL *element in filenamesArray) {
 NSLog(@"File = %@", element);
 }
 }
}

@end

4. Choose File ➤ Save or press S to save your changes.

5. Double-click the MainMenu.xib file stored in the Resources folder. Interface

Builder appears and displays your user interface window.

CHAPTER 20: Using Built-In Dialog Boxes 327

6. Right-click the My Test App Delegate icon in the MainMenu.xib window. A heads-

up window appears. Make sure the displayPanel method is connected to the

push button on your user interface. If not, click the circle that appears to the right

of displayPanel under the Received Actions category and drag it to the push

button on the user interface.

7. Choose File ➤ Save or press S to save your changes.

8. Switch to Xcode and click the Build and Run button or choose Build ➤ Build and

Run. As long as you didn’t mistype anything, you should see a blank window pop

up.

9. Click the push button. The Open panel appears.

10. Hold down the key and click two or more files. Then click the Open button.

11. Quit your program.

12. Choose Run ➤ Console or press R. You should see the printed statements

created by the NSLog command:

2010-09-27 21:26:24.726 UITest[984:a0f] File =
/Users/bothecat/Documents/ComputorEdge/Fig-3.jpg
2010-09-27 21:26:24.726 UITest[984:a0f] File =
/Users/bothecat/Documents/ComputorEdge/Fig-5.jpg

In this example, the user clicked two files, named Fig-3.jpg and Fig-5.jpg. Depending on

which files you selected, you’ll see those file names displayed instead.

Creating a Save Panel
A Save panel is similar to an Open panel except that the Save panel lets you create a file

by typing a new file name and selecting a folder in which to store that new file. (The

Save panel won’t actually create the file, though; you’ll need to write Objective-C code

that does this for you.)

To create a Save panel, you must create a pointer to the NSSavePanel class:

NSSavePanel *myPanel = [NSSavePanel savePanel];

Then to display the Save panel, you need to use the runModal method and check if the

user clicked the Save button (represented by the NSOKButton constant). Then you need

to retrieve the name of the file that the user typed, which gets stored in the URL or

URL.lastPathComponent property. The URL property stores the entire path and file name,

such as /Documents/filename, while the URL.lastPathComponent property just stores the

file name. Depending on whether you want to retrieve the entire path or just the file

name, you can use the URL or URL.lastPathComponent property like this:

if ([myPanel runModal] == NSOKButton)
 {
 // URL returns the entire path and file name
 NSLog (@"Path chosen = %@", myPanel.URL);

CHAPTER 20: Using Built-In Dialog Boxes 328

//URL.lastPathComponent returns just the file name
 NSLog (@"File typed = %@", myPanel.URL);
 }

To see how to create and use a Save panel, follow these steps:

1. Open the MyTest program that you modified in the previous section.

2. Double-click the MainMenu.xib file stored in the Resources folder. Interface

Builder appears and displays your user interface window. One push button should

appear on the user interface. If not, delete anything currently displayed and drag

and drop one Push Button object on the user interface window.

3. Click the MyTestAppDelegate.m file stored in the Classes folder and modify the

code as follows:

#import "MyTestAppDelegate.h"

@implementation MyTestAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 // Insert code here to initialize your application

}

- (void)dealloc {

 [window release];
 [super dealloc];
}

-(IBAction) displayPanel:(id)sender
{
 NSSavePanel *myPanel = [NSSavePanel savePanel];

 if ([myPanel runModal] == NSOKButton)
 {
 NSLog (@"Path chosen = %@", myPanel.URL);
 NSLog (@"File typed = %@", myPanel.URL.lastPathComponent);
 }
}

@end

4. Choose File ➤ Save or press S to save your changes.

5. Switch to Xcode and click the Build and Run button or choose Build ➤ Build and

Run. As long as you didn’t mistype anything, you should see a blank window pop

up.

6. Click the push button. The Save panel appears.

7. Click in the Save As text field and type a filename such as My Files.

CHAPTER 20: Using Built-In Dialog Boxes 329

8. Quit your program.

9. Choose Run ➤ Console or press R. You should see the printed statement

created by the NSLog command:

2010-09-28 13:57:15.920 MyTest[2250:a0f] Path chosen =
file://localhost/Users/JohnDoe/Documents/My%20Files
2010-09-28 13:57:15.920 MyTest[2250:a0f] File typed = My Files

Limiting File Types
The Save panel and the Open panel look and work similarly because the Save panel

inherits features from the Open panel. As a result, the Save panel can also use the

allowedFileTypes property to automatically add a specific extension to every file the

user types in the Save panel.

To define a file extension, such as .xyz, you could use the following:

NSArray *fileTypes = [NSArray arrayWithObjects:@"xyz", nil];

If the user typed the file name “MyFiles” into the Save panel, the preceding code would

tell your program to add the .xyz file extension so that the complete file name would be

MyFiles.xyz. After you’ve defined a file extension, the next step is to tell the Save panel

to use the allowedFilesTypes property:

NSArray *fileTypes = [NSArray arrayWithObjects:@"xyz", nil];
myPanel.allowedFileTypes = fileTypes;

Summary
Dialog boxes let you display short messages, temporarily interrupting the user. You can

customize the text inside an alert dialog box to display different types of messages.

Generally a dialog box can simply display information, but it can also retrieve the choice

that the user picked so your program can respond accordingly.

If your program needs to open or save a file, you can use the built-in Open and Save

panels. Both of these panels provide the standard Mac Open and Save panel that lets

users switch between drives and folders to search for a file. To make these Open and

Save panels actually work, you’ll need to write Objective-C code to retrieve or save a

file.

By using the built-in dialog boxes and Open and Save panels, you can create a program

that looks and behaves like every Mac program. Users will be familiar with the way these

dialog boxes and Open/Save panels work, so you can focus your time just writing the

code needed to make your program do something useful.

CHAPTER 20: Using Built-In Dialog Boxes 330

331

331

 Chapter

Creating Pull-Down
Menus
The simplest user interface might consist of a window with a few buttons or check
boxes on the screen. However, there’s a limit to the number of options you can cram
inside a window. Eventually, you may want to organize commands in categories and
display those categories of commands in pull-down menus at the top of the screen.

Pull-down menus enable you to store and organize multiple commands, yet keep them
tucked out of sight until the user actually needs them. In addition to menus, you can
create submenus. You can also assign shortcut keystrokes to specific menu commands.
By designing a pull-down menu for your program, you can simplify your user interface
and provide a consistent Mac look and feel for your program without any additional
programming whatsoever.

When you create a new program, Interface Builder automatically creates a standard pull-
down menu for you. To make this pull-down menu work, you need to customize these
menus and commands. In this chapter, you’ll learn the steps involved in editing pull-
down menus, linking menu commands and assigning keystrokes to them, and defining
text inside dialog boxes.

Editing Pull-Down Menus
Every time you create a new project based on the Cocoa Application template, Xcode
automatically creates a basic pull-down menu that contains common menus (File, Edit,
View, etc.) along with common menu items (Cut, Copy, Paste, etc.), as shown in Figure
21–1.

21

CHAPTER 21: Creating Pull-Down Menus 332

Figure 21–1. Menus and menu items make up the pull-down menus.

The following are the six pull-down menus that typically appear:

 File: Commands for manipulating files used by the program, such as
opening, creating, printing, and saving

 Edit: Commands for editing data, such as Cut, Copy, and Paste

 Format: Commands for changing the appearance of data

 View: Commands for changing the appearance of data displayed in a
window on the screen

 Window: Commands for manipulating multiple windows that display
data

 Help: Commands for getting help using the program

Editing a Menu or Menu Item
Since Xcode creates generic pull-down menus for your Cocoa application automatically,
you’ll need to customize these menus and menu items. To edit a pull-down menu, follow
these steps:

1. Double-click the MainMenu.xib file that contains the pull-down menu you want to

edit. Interface Builder appears.

2. Double-click the Main Menu icon inside the MainMenu.xib window to display the

pull-down menu bar.

3. Double-click the menu object that you want to edit. For example, if you want to

change the name of the Format menu, you would double-click Format. Your

chosen menu appears highlighted.

4. Type new text or use the arrow keys to edit the existing menu title.

CHAPTER 21: Creating Pull-Down Menus 333

To edit a menu item that appears in a pull-down menu, follow these steps:

5. Double-click the MainMenu.xib file that contains the pull-down menu you want to

edit.

6. Double-click the Main Menu icon inside the MainMenu.xib window to display the

pull-down menu bar.

7. Click the menu that contains the menu item you want to edit. A pull-down menu

appears.

8. Double-click the menu item that you want to edit. Your chosen item appears

highlighted, as shown in Figure 21–2.

Figure 21–2. Double-clicking highlights a menu or menu item.

9. Type new text or use the arrow keys to edit the existing menu item title.

You can also edit a menu or menu item by clicking it and then choosing Tools ➤
Attributes Inspector. You then can edit the menu or menu item in the Attributes
Inspector window, as shown in Figure 21–3.

Figure 21–3. The Attributes Inspector window lets you edit a menu or menu item in the Title field.

Moving a Menu or Menu Item
Sometimes a pull-down menu or menu item may not appear in the order you want, in
which case you can move it to another position. To move a menu, follow these steps:

1. Double-click the MainMenu.xib file that contains the pull-down menu you want to

move.

CHAPTER 21: Creating Pull-Down Menus 334

2. Double-click the Main Menu icon inside the MainMenu.xib window to display the

pull-down menu bar.

3. Click on the menu that you want to move (such as Edit or View) and drag the

mouse left or right. As you move the mouse, a vertical line indicates where the

menu will appear when you release the mouse button.

4. Release the mouse button when you’re happy with the new position of the menu.

To move a menu item, follow these steps:

5. Double-click the MainMenu.xib file that contains the pull-down menu in which the

menu item you want to move appears.

6. Double-click the Main Menu icon inside the MainMenu.xib window to display the

pull-down menu bar.

7. Click the menu (such as File or Edit) that contains the menu item you want to

move. The pull-down menu appears.

8. Click the menu item that you want to move and drag the mouse up or down. As

you move the mouse, a horizontal line indicates where the menu item will appear

when you release the mouse button, as shown in Figure 21–4.

Figure 21–4. Dragging a menu item to change its position

9. Release the mouse button when you’re happy with the new position of the menu

item.

CHAPTER 21: Creating Pull-Down Menus 335

Deleting Menus and Menu Items
Chances are good that the default pull-down menu that Xcode creates will contain
menus and menu items that your program won’t need. To delete a pull-down menu (and
all menu items stored in that pull-down menu), follow these steps:

1. Double-click the MainMenu.xib file that contains the pull-down menu you want to

delete.

2. Double-click the Main Menu icon inside the MainMenu.xib window to display the

pull-down menu bar.

3. Click the menu that you want to delete. The menu’s pull-down menu appears.

4. Click the menu again. The menu’s pull-down menu now disappears.

5. Press Delete or Backspace to delete your selected menu.

To delete a menu item, follow these steps:

1. Double-click the MainMenu.xib file that contains the pull-down menu in which the

menu item you want to delete appears.

2. Double-click the Main Menu icon inside the MainMenu.xib window to display the

pull-down menu bar.

3. Click the menu that contains the menu item you want to delete. Its pull-down

menu appears.

4. Click the menu item you want to delete.

5. Press Delete or Backspace to delete your selected menu item.

NOTE: If you delete a menu or menu item by mistake, you can undo the deletion and retrieve it

by pressing Z.

Creating New Menus and Menu Items
After deleting, editing, and rearranging menus and menu items, you may eventually need
to add your own menus and menu items to the pull-down menus. To add a new menu,
follow these steps:

1. Double-click the MainMenu.xib file stored in the Resources folder. Interface

Builder appears.

2. Double-click the Main Menu icon inside the MainMenu.xib window to display the

pull-down menu bar.

3. Choose Tools ➤ Library to open the Library window.

CHAPTER 21: Creating Pull-Down Menus 336

4. Scroll through the Object Library until you find a Menu Item object such as File

Menu Item or Text Menu Item, as shown in Figure 21–5.

Figure 21–5. The Menu Item objects appear in the Object Library.

5. Drag the Menu Item object over your pull-down menu bar. A vertical line indicates

where your newly added menu will appear when you release the mouse button.

6. Release the mouse button to drop the menu in place.

7. Double-click the menu to highlight it.

CHAPTER 21: Creating Pull-Down Menus 337

8. Type or edit the menu title.

9. Choose File ➤ Save or press S to save your changes.

To add a new menu item to an existing pull-down menu, follow these steps:

1. Double-click the MainMenu.xib file stored in the Resources folder. Interface

Builder appears.

2. Double-click the Main Menu icon inside the MainMenu.xib window to display the

pull-down menu bar.

3. Click the menu to which you want to add a new item. So, for example, if you want

to add a new menu item to the File menu, you would click the File menu to display

its menu.

4. Choose Tools ➤ Library to open the Library window.

5. Scroll through the Object Library until you find the Menu Item object, as shown in

Figure 21–6.

CHAPTER 21: Creating Pull-Down Menus 338

Figure 21–6. The Menu Item object in the Library window.

6. Drag the Menu Item object over the pull-down menu. A horizontal line indicates

where your menu item will appear when you release the mouse button.

7. Release the mouse button to drop the menu item in place.

8. Double-click your newly added menu item.

9. Type or edit the menu item.

10. Choose File ➤ Save or press S to save your changes.

CHAPTER 21: Creating Pull-Down Menus 339

Linking Menu Commands
After creating a new menu item, you need to connect it to a method to make it actually
work. Just as you can connect a push button or any user interface object to a method,
you can connect a menu item to a method in the same fashion.

To see how to connect a menu item to a method, follow these steps:

1. Open the MyTest program that you modified in the previous chapter.

2. Click the MyTestAppDelegate.h file stored in the Classes folder and modify the

code as follows:

#import <Cocoa/Cocoa.h>

@interface MyTestAppDelegate : NSObject <NSApplicationDelegate> {
 NSWindow *window;

 }

@property (retain) IBOutlet NSWindow *window;

-(IBAction) displayDialog:(id)sender;

@end

3. Choose File ➤ Save or press S to save your changes.

4. Click the MyTestAppDelegate.m file stored in the Classes folder and modify the

code as follows:

#import "MyTestAppDelegate.h"

@implementation MyTestAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 // Insert code here to initialize your application

}

- (void)dealloc {

 [window release];
 [super dealloc];
}

-(IBAction) displayDialog:(id)sender
{
 NSAlert *alert = [[NSAlert alloc] init];
 alert.alertStyle = NSWarningAlertStyle;

 alert.messageText = @"It worked!";
 alert.informativeText = @"The displayDialog method ran.";

CHAPTER 21: Creating Pull-Down Menus 340

 [alert runModal];
 [alert release];
}

@end

5. Choose File ➤ Save or press S to save your changes.

6. Double-click the MainMenu.xib file stored in the Resources folder to open your

user interface.

7. Double-click the Main Menu icon inside the MainMenu.xib window to display

the pull-down menu bar.

8. Click the File menu to display its pull-down menu.

9. Choose Tools ➤ Library to open the Library window.

10. Scroll through the Object Library until you see the Menu Item object.

11. Drag the Menu Item object and drop it near the bottom of the File menu.

12. Right-click the menu item you just added. A heads-up window appears, as shown

in Figure 21–7.

Figure 21–7. The Connections window lets you link a menu item to a method.

CHAPTER 21: Creating Pull-Down Menus 341

NOTE: You can also choose Tools ➤ Connections Inspector to view the Connections Inspector

window.

13. Move the mouse pointer over the circle that appears to the right of selector

under the Sent Actions heading.

14. Click and drag the mouse pointer over the My Test App Delegate icon. A menu of

methods appears.

15. Choose displayDialog.

16. Choose File ➤ Save or press S to save your changes.

17. Switch to Xcode and click the Build and Run button or choose Build ➤ Build and

Run. As long as you didn’t mistype anything, you should see a blank window pop

up.

18. Choose File ➤ Item. An alert dialog box pops up to let you know that the

displayDialog method ran.

19. Click the OK button to make the alert dialog box go away.

20. Quit your program.

Assigning Keystrokes to a Menu Item
To make choosing a particular menu command easy, many programs assign shortcut
keystrokes. Instead of clicking a menu title to display a pull-down menu, and then
clicking a command, the user can just press the assigned keystroke combination and
your program chooses the command without requiring the user to fumble with the pull-
down menus at all.

To assign a keystroke combination to a menu command, follow these steps:

1. Double-click the MainMenu.xib file that contains the pull-down menu in which the

menu command appears.

2. Double-click the Main Menu icon inside the MainMenu.xib window to display

the pull-down menu bar.

3. Click the menu to display the pull-down menu of menu items.

4. Click a menu item to which you want to assign a keystroke.

5. Choose Tools ➤ Attributes Inspector to display the Attributes Inspector window.

6. Click in the Key Equiv. field.

CHAPTER 21: Creating Pull-Down Menus 342

7. Press the keystroke combination you want to assign to the currently selected

command. Make sure you choose a keystroke combination that isn’t used by

another command. Your chosen keystroke combination appears on the pull-down

menu, as shown in Figure 21–8. Now when your program runs, users can choose

the command by pressing its keystroke combination.

Figure 21–8. Pressing keys in the Keystroke Equiv. field displays those keystrokes on the pull-down menu.

Summary
When you need to provide the user with multiple commands, you probably won’t want
to clutter your user interface with multiple push buttons or check boxes. Instead, you
can store related commands in their own menu that users can pull down when they want
to choose a particular command.

To make choosing a menu command even easier, you can assign a unique keystroke
combination to that command. Then a user can just press that keystroke combination to
choose the command without displaying the pull-down menu at all.

To edit, rearrange, or delete menu titles and menu commands, you can click the pull-
down menu directly. If you want to add new menus or menu items, just drag a menu or
menu item from the Library window and drop it directly on the pull-down menu bar or on
a menu.

In general, use the standard commands in every menu whenever possible, such as the
Cut, Copy, and Paste commands under the Edit menu or the Save, Print, and Open
commands under the File menu. Users expect to find common commands under certain
menu titles, so delete, edit, or move them only when absolutely necessary to ensure that
your program looks and behaves like a typical Mac application.

343

343

 Chapter

Designing Your Own
Programs
Every program starts off with a problem. Typically the best problems for computers to

solve involve something that humans find tedious, tiresome, or error-prone to do

themselves. For example, people used to calculate formulas by hand. If they made one

mistake, any formulas relying on the flawed data would calculate incorrect answers. To

make calculating multiple formulas faster and more accurate, programmers invented the

spreadsheet.

The invention of the spreadsheet provided a general-purpose tool that a wide variety of

people could use, from business executives calculating financial results to engineers

calculating scientific results. However, programs can also solve more specific types of

problems.

A lottery-number prediction program might store all previously drawn numbers and

calculate which numbers appear most often. Based on this information, the program

could show only those numbers with the highest chance of getting picked, theoretically

giving you a greater chance of winning the lottery.

Whether you want to create a general-purpose tool like a spreadsheet or a more

specialized tool like a lottery number predictor, the goal of any program is always the

same. Identify a problem, define how to solve this problem, and then write step-by-step

instructions to create a program.

When creating a program, the most important work isn’t the actual writing of commands

in a specific programming language like Objective-C. Instead, the most important work

involves identifying the problem to solve, identifying the best way to solve this problem

in a way that’s easiest for the user, and identifying how to turn this design into an actual

working program.

NOTE: One major reason why programs fail is because the programmers never identified a clear

problem to solve. If a program can’t solve a problem, then there’s no use for that program.

22

CHAPTER 22: Designing Your Own Programs 344

Identifying the Right Problem
The best person to identify the problem you need to solve is the person who will be

using your program. If you identify a problem and rush out to write a program to solve

that problem, you may later find out that you’ve solved a problem that isn’t that

important after all.

For example, suppose you wrote a program that stored data on a racehorse. Based on

this horse’s past six races and the racing history of all the other horses in the same race,

your program might calculate which horse seems mostly likely to win.

However, what the user might really want is a program that uses the current odds to

determine the type of bet with the highest probability of winning and returning the

highest payoff possible. Betting on the winning horse might be pointless if the payoff is

low. However, betting on a horse to come in second or third might pay far more if that

horse had high odds.

Therefore, the real problem isn’t picking the winning horse but in choosing the horse

most likely to return the highest payoff, which may not always be the winning horse. The

real goal is to make the most money with the highest probability of success. If you fail to

identify the real problem your users want solved, you’ll fail to meet the needs of your

customers.

The key to identifying the real problem your program should solve is to simply ask the

potential users of your program what they really need.

If you fail to ask the users what they need, chances are good that you’ll create a

program that solves the wrong problem. As a result, users won’t find your program

useful, nobody will want it, and you’ll have wasted your time creating it.

Since users may not be clear on exactly what they want, always ask what’s the most

painful problem that annoys people the most and causes the most frustration and

agony. Once you can identify this single, most pressing problem, the next step is

deciding whether this problem can be solved with a program and, if so, how to solve this

problem in a way that provides the most relief to the user.

What Programs Do Well
Every problem is also an opportunity, but not every problem can be solved with a

computer program. If you own a bar and your problem is that underage people keep

trying to sneak into your building, a computer program probably won’t be as helpful as

hiring extra doormen and bouncers to guard all the doors and check the IDs of everyone

who wants to get in.

Any problem that involves a physical presence (like a security guard) is probably best left

for real people. However, any problem that requires mental activities that need speed

and accuracy are perfect problems for a computer program to solve.

CHAPTER 22: Designing Your Own Programs 345

For example, how do you calculate the best time to buy a particular stock during the

hectic commotion of the stock market? For a human, trying to capture rapidly changing

data and make sense of it means taking too long with a high risk of inaccuracy. For a

computer, making sense of rapidly changing data and calculating a result is simple and

easy.

The two keys of most programs are speed and accuracy. A program designed to

navigate an airplane must be accurate and fast. Even the most accurate airplane

computer is worthless if it can’t calculate an alternate path around a mountain in time.

Computers excel at speed and accuracy, which makes them perfect for any tedious jobs

that humans would rather not do. Before spreadsheets, people had to use adding

machines to calculate long lists of figures. Before word processors, people had to use

typewriters and physical blocks of letters to create text and print newspapers. Before

databases, people had to use filing cabinets stuffed with drawers full of files that were

nearly impossible to search quickly and accurately.

Once you’ve identified a mental problem solvable by a computer, the next step is to

determine how to solve it as a computer program.

Designing the Program Structure
In the past, once programmers identified a problem, they would rush off and start writing

a program to solve that problem, often without the feedback of the people who would

use that program. The end result would be a lot of wasted effort creating a program that

didn’t quite do what anyone wanted.

To avoid this trap, it’s best to design your program on paper because it’s easier and less

time-consuming to scribble something on a sheet of paper than it is to write a program

on your computer, only to throw away all your work afterward because you did it wrong.

There is no one best way to design a program, but there are general principles for

designing a program. One common way to design a program involves breaking it into

three parts called model-view-controller.

 The model portion does all the calculations that make your program

create some useful result.

 The view portion displays your user interface that accepts input from

the user and displays information back to the user.

 The controller portion acts as the bridge between the view and the

model. The controller takes data from the user interface (the view) and

sends it to the model to calculate a new result. The model returns its

calculation to the controller, which passes the data back to the user

interface (the view).

By dividing a program into a model, view, and controller, you can focus on different

parts of your program at a time.

CHAPTER 22: Designing Your Own Programs 346

The Model
The model portion of your program typically includes one or more Objective-C class files

that do all the necessary calculations so your program can solve a specific problem. The

purpose of the model is to isolate the calculation portion of your program so it operates

completely independently of the user interface. This gives you the flexibility to change

the user interface without worrying about making any changes to the model portion of

your program.

The Controller
The controller portion of your program consists of one or more Objective-C class files,

which act as a middleman in between your model and your view portion of your

program. The idea is to isolate your model portion of your program from the view portion

of your program (the user interface). Whenever the model needs to interact with the user

interface, it sends data or requests information through the controller.

The only way the model ever communicates with the view is through a controller. This

lets you replace or modify the view at any time without worrying about its effect on the

model. Likewise, this also lets you modify the model at any time without worrying about

its effects on the view. Any time you make a change to either the model or the view, you

just have to worry about making the appropriate changes to the controller.

Essentially, the controller keeps the model and the view separate so they act more like

building blocks that can be easily swapped in and out of your program.

The View
The view portion of your program typically includes one or more .xib files that contain

your user interface. In many cases, you can create a mock-up of your program’s user

interface and show this mock-up to potential users to get their feedback, as shown in

Figure 22–1.

CHAPTER 22: Designing Your Own Programs 347

Figure 22–1. Designing a mock-up of a user interface can be as simple as drawing it on a piece of paper or on
the computer.

A mock-up of your program’s user interface lets you create a rough draft of your

program without expending any effort writing an actual program. Instead, you just draw

pictures, show users what the program could look like, and get their feedback on what’s

missing, what should be rearranged, and what should be eliminated altogether.

After potential users have examined your user interface and determined what and how it

should work, you can take the next step and create that actual user interface as a .xib

file using Interface Builder, as shown in Figure 22–2.

CHAPTER 22: Designing Your Own Programs 348

Figure 22–2. Turning a rough draft of a user interface into an actual .xib file

Although your program at this point will show only what your program might look like, it

won’t actually do anything. With a mock-up of your program, you can focus on the main

features of your program and how they should work.

Remember, designing your user interface can be one of the hardest parts to creating

your program because if your program works perfectly but nobody likes or can

understand your program’s user interface, nobody will want to use your program. Since

there is no scientific measurement for what makes a good user interface, consider the

following tips for creating your program’s user interface.

Be Conventional
When designing a program, follow the basic conventions that users expect from a Mac

program. That includes pull-down menus with familiar menu titles in the expected order

(such as the File menu first followed by Edit, View, Window, and Help) along with

windows and user interface elements that behave identically to other Mac programs.

Using the elements of a typical Mac user interface offers two huge benefits. First, users

can immediately become familiar with the basic ways of controlling your program. As a

result, they’ll be more receptive to using it and will know how to find and choose

commands to control your program.

Second, creating your user interface out of common Mac user interface elements also

makes your job, as a programmer, much easier since Apple has already written the code

CHAPTER 22: Designing Your Own Programs 349

needed to create common user interface elements such as windows and pull-down

menus. All you have to do is connect these existing user interface elements to your

program, and you can create a working program with little or no additional coding

whatsoever.

Be Imitative
Look at some of your own favorite programs and ask yourself what makes them so

useful. Chances are good that for each program you like, there are probably a handful of

rival programs offering the same, or maybe even more, features, so what is it about the

program you use that makes it stand out?

You might like the way the program looks on the screen because the information and

commands you need are thoughtfully laid out. Maybe you like the way the program

guides you from one task to another, making the transition effortlessly while showing

you relationships between diverse information that you may never have spotted on your

own. Perhaps you like the way a program provides power features for advanced users

yet remains accessible to novices.

Whatever you find useful in other programs, see whether you can adapt those designs in

your own program. By doing so, you can take the best features from multiple programs

and use them to create a great program that other users will rave about.

Besides looking at other programs to imitate, look at physical, real-world objects that

represent tools that users might already be familiar using. For example, the Stickies

program on the Mac mimics those familiar sticky notes that people use to jot down

notes and stick them on desks, monitors, and chairs to remind them of something. If

you’re creating a program that lets users jot down ideas and notes, modeling your

program after physical sticky notes can make your program easier for users to

understand and use, as shown in Figure 22–3.

CHAPTER 22: Designing Your Own Programs 350

Figure 22–3. The Stickies program mimics sticky notes that people use in an office.

By studying existing programs and real-world tools that your program may be

mimicking, you may be able to discover the optimum appearance for displaying

information and allowing input for your program.

Be Unusual
Closely adhering to conventional user interface designs like pull-down menus and

resizable windows can make your program more comfortable and easier to use.

However, take a moment to think how your program might need to behave in

unconventional ways that actually might make your program easier and more intuitive to

use.

For example, suppose your program displayed a 3D image of a piece of equipment such

as a tractor or a missile. You could display pull-down menu commands that would let

you rotate that image, you might display a horizontal and vertical slider that would let

you rotate that image by dragging the mouse, or you could throw all conventional user

interface ideas away and design your own user interface that lets the user directly

manipulate the item by dragging the mouse or by tracking finger gestures on a trackpad.

By offering a specialized way of interacting with the 3D image, your program might not

look and work like anything the user might have ever used before, but it could make

your program more intuitive and simpler to use.

CHAPTER 22: Designing Your Own Programs 351

As a general rule, use standard user interface elements whenever possible, but don’t be

afraid to create custom interface elements. Creating such custom user interface

elements will take time to design, write, and test, but the end result can be a user

interface uniquely customized for your users and program.

Thinking in Objects
With object-oriented programming languages like Objective-C, you need to think of how

to divide your program into objects. Ideally, each object should represent a distinct part

of your program.

For example, if you were creating a program to create and manipulate outlines, each

outline heading might be an object. If you were creating a video game, each displayed

item, such as a character or an obstacle, could also be an object.

Don’t worry about designing your program into objects perfectly at this point. Just

identify the most likely parts of your program that can be represented by objects and

then decide what type of properties and methods those objects might need.

An object representing an outline heading might need properties that define the text to

display and its position in that outline on the screen. Such an outline heading object

might also need a method for moving the heading and a second method for changing

the formatting of the text.

An object representing a video game monster might need a property that represents its

health and a method for moving and attacking another item on the screen.

The goal isn’t to define every method and property for each object in your program, but

to slowly flesh out the design of your program so you know how the different parts of

your program might interact with each other.

There is no one best way to divide a program into objects. However, you should always

strive to write as little code as possible to make your program easier to write. The easier

a program is to write, the easier it will be to fix and modify, improving its reliability.

To achieve this goal, find the commonalities of the different parts of your program. For

example, the common parts of a video game might be an object that represents a

monster and an object that represents the player. Both the player and the monster need

to move and fight, so it’s natural to create a single class that contains a health property

and a move method, as shown in Figure 22–4.

CHAPTER 22: Designing Your Own Programs 352

Figure 22–4. By identifying objects with common features, you can design a single class to represent those
objects.

Searching for common features among objects means you can write less duplicate

code. After you’ve identified the main types of objects in your program, you can go to

the next step of actually writing Objective-C code to create your class files.

Picking a Data Structure
With a rough design of your program and a clear idea what problem your program needs

to solve, another step to completing your program is deciding how your program will

work. First you must consider what type of data your program will accept and

manipulate to create a useful result for the user.

The type of data your program needs to store and the way it manipulates that data can

determine the type of data structure you use. Choose the right data structure, and your

program can be easy to write. Choose the wrong data structure, and you could wind up

writing a lot of extra (and unnecessary) code to make your program work.

For example, suppose you created a simple database program for storing names. One

option might be to store each name as a separate variable. Unfortunately, you may not

know how many possible names someone might want to store, so you would have to

create a large number of variables to store a fixed number of possible names, or you

could choose a more flexible data structure such as an array, which can grow as the

user adds more data.

By choosing the right data structure, you can greatly simplify the way your program

works by writing less code and creating a more reliable program in the process.

CHAPTER 22: Designing Your Own Programs 353

Creating an Algorithm
Besides choosing the best data structure for your program, you must also know how to

solve a particular problem step-by-step. (If you don’t know how to do this, then you

need to find someone who does because if no one knows how to solve a particular

problem, the computer will never know how to do it either.)

The step-by-step instructions you need to solve a problem are called an algorithm.

Since there might be a million different ways to solve the same problem, your goal is to

find an algorithm that starts with the data a user might input into your program and then

manipulates that data to achieve a specific result.

First, identify the end result. Next, identify the data that your program will start with. Now

your goal is to find all the missing steps in between.

The type of algorithm you create depends on the type of data structures your program

uses, so part of your algorithm will need to know how to accept data from the user, how

to store data in a data structure, and how to send a new calculated result back to the

user again.

One way to create an algorithm is to pick typical data that your program might accept,

determine the result your program would calculate from this initial data, and then write

out the steps you would need to solve that problem using a pencil and paper.

For example, suppose you wanted to implement a simple encryption algorithm known

as the Caesar Cipher. The basic idea behind this cipher is to shift one letter a fixed

number of places. So if you shifted all letters to the right by three places, the letter D

would actually represent the letter A, the letter E would represent the letter B, and so on.

Shifting all letters three places to the right would create a coded message “EDG” that

would represent the actual message “BAD.”

To implement such a simple letter substitution algorithm, we could start by assigning

each letter a number. The number 0 would represent the letter A, the number 1 would

represent the letter B, and so on. This could easily be implemented by creating an array,

storing each letter in that array, and using the array index to represent each letter where

the letter A would appear in the first array element, which has an index of 0, the letter B

would appear in the second array element, which has an index of 1, and so on, as

shown in Figure 22–5.

Figure 22–5. The index position of an array can represent each stored letter.

To encrypt a message, you need to define how many letters to shift to the right, which

can be any value ranging from 1 to 25. (Shifting 0 places or 26 places essentially means

that each letter represents itself, which would obviously not hide the actual message.)

CHAPTER 22: Designing Your Own Programs 354

To encrypt a message, the program needs two pieces of data:

 How many places to shift a letter to the right

 Which letter to shift

To encrypt a letter, you can use this simple encryption formula:

Encryptionn (x) = (x + n) mod 26

With this formula, the variable x represents the letter to shift (where 0 represents the

letter A, 1 represents the letter B, and so on), and n represents the number of places to

shift.

Defining an Algorithm
When you know what problem you want to solve and how you can solve it, you should

write out those steps to look for any flaws in your logic. Essentially the steps to solve the

problem of encrypting a text string might look like this:

1. Count the number of characters in a string, and store this string length in a

variable.

2. Identify how many places to shift to the right, and store this numeric value in the n

variable.

3. Strip away the first letter of the string, and save the remaining text in separate

variables.

4. Associate the stripped character with its associated number representation, such

as 0 for the letter A, 1 for the letter B, and so on. Store this numeric value into a

variable.

5. Use the encryption formula to determine which letter to replace the current letter.

So if the computer is encrypting the letter C, it would first store the value of 2

(representing the letter C). Next, it would store the number of places to shift in the

n variable. If the value of n were equal to 4, the encryption formula would look like

this:

Encryption4 (2) = (2 + 4) mod 26

 = 6

So, the encryption formula would replace the letter C with the letter represented by the

number 6. Take this number and replace it with the letter associated with that number,

such as replacing the number 6 with the letter G.

6. Repeat steps 3–5 using the string length as a counting variable.

7. Print out the final result:

Encoded text = GEX

CHAPTER 22: Designing Your Own Programs 355

Once you’ve created an algorithm, go through the steps manually to verify that they

work. You may know how to solve a problem, but you may not have clearly stated all of

the steps needed to solve that particular problem. By forcing yourself to follow the exact

steps a computer would follow, you can see if you’re missing a step or if a particular

step isn’t working right.

Ideally, have someone else go through the steps because that person won’t have all the

assumptions and knowledge about the algorithm beforehand, so they’ll be more likely to

follow your instructions literally, which is exactly how the computer will do it too.

Writing Pseudocode
When you’re satisfied that your instructions are both accurate and complete, the next

step is to translate your algorithm into a simplified programming language called

pseudocode. The purpose of pseudocode is to write instructions like a programming

language but without worrying about proper syntax or commands.

Examining the previous algorithm, you could break this down into pseudocode like this:

inputText = String to encrypt.
n = number of characters to shift
lengthString = length (inputText)
for I = 1 to lengthString)

strippedText = first letter of inputText
remainderText = remaining characters of inputText
letterValue = numeric equivalent (strippedText)
encryptedText = (letterValue + n) mod 26
cipherText = letter equivalent (encryptedText)
encodedText = encodedText + cipherText

Print encodedText.

The goal of translating your algorithm from a wordy description into shorter, more

computer-like pseudocode is to gradually translate your algorithm from English to actual

Objective-C code.

Writing Actual Code
When you’ve defined the steps to solving a problem using pseudocode, you can convert

your defined steps and turn them into actual commands in any programming language.

For Mac programming using Xcode, you’ll be using Objective-C code. If you create a

new Mac OS X Cocoa application, you can edit the AppDelegate.m file’s

applicationDidFinishLaunching method with the following Objective-C code:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 // Insert code here to initialize your application
 NSString *object1 = @"A";
 NSString *object2 = @"B";
 NSString *object3 = @"C";
 NSString *object4 = @"D";
 NSString *object5 = @"E";
 NSString *object6 = @"F";
 NSString *object7 = @"G";

CHAPTER 22: Designing Your Own Programs 356

 NSString *object8 = @"H";
 NSString *object9 = @"I";
 NSString *object10 = @"J";
 NSString *object11 = @"K";
 NSString *object12 = @"L";
 NSString *object13 = @"M";
 NSString *object14 = @"N";
 NSString *object15 = @"O";
 NSString *object16 = @"P";
 NSString *object17 = @"Q";
 NSString *object18 = @"R";
 NSString *object19 = @"S";
 NSString *object20 = @"T";
 NSString *object21 = @"U";
 NSString *object22 = @"V";
 NSString *object23 = @"W";
 NSString *object24 = @"X";
 NSString *object25 = @"Y";
 NSString *object26 = @"Z";

 NSArray *letterArray;
 letterArray = [NSArray arrayWithObjects: object1, object2, object3, object4,
object5, object6, object7, object8, object9, object10, object11, object12, object13,
object14, object15, object16, object17, object18, object19, object20, object21,
object22, object23, object24, object25, object26, nil];

 NSString *inputText;
 inputText = @"CAT";
 int lengthString = [inputText length];

 NSMutableString *plainText; // = [[NSMutableString alloc] init];
 plainText = [NSMutableString stringWithString: inputText];

 NSMutableString *encodedText; // = [[NSMutableString alloc] init];
 encodedText = [NSMutableString stringWithString: @""];

 NSString *remainderText;
 NSString *strippedText;
 NSInteger letterValue;
 NSInteger encryptedText;
 NSString *cipherText;
 NSInteger n; //Shift
 n = 4;

 //Loop -- Strip away first character and leave remaining characters behind
 int i;
 for (i = 1; i <= lengthString; i++)
 {
 remainderText = [plainText substringFromIndex:1];
 strippedText = [plainText substringToIndex:1];

 NSLog (@"Stripped character = %@", strippedText);
 plainText = [NSMutableString stringWithString: remainderText];
 NSLog (@"Plaintext left = %@", plainText);

 letterValue = [letterArray indexOfObject: strippedText];

CHAPTER 22: Designing Your Own Programs 357

 encryptedText = (letterValue + n) % 26;

 cipherText = [letterArray objectAtIndex: encryptedText];
 [encodedText appendString: cipherText];
 NSLog (@"Encoded text = %@", encodedText);
 NSLog (@"**********");
 }
 // End loop
}

This Objective-C code stores the letters of the alphabet into an array where the index

position of each character represents its numeric value, so the letter A is located at

index position 0, the letter B is located at index position 1, and so on.

This code also uses a fixed value for the input text (CAT) and the number of places to

shift the characters (4). Ideally, you'll want to allow the user to input different values for

the text and the number of places to shift. If you ran this code, the NSLog commands

would print the following to show you how the program strips away each character of

the input text and creates a new coded version of that text, converting the string CAT to

GEX:

2010-12-12 16:08:33.418 Cipher[27523:a0f] Stripped character = C
2010-12-12 16:08:33.420 Cipher[27523:a0f] Plaintext left = AT
2010-12-12 16:08:33.421 Cipher[27523:a0f] Encoded text = G
2010-12-12 16:08:33.421 Cipher[27523:a0f] **********
2010-12-12 16:08:33.422 Cipher[27523:a0f] Stripped character = A
2010-12-12 16:08:33.423 Cipher[27523:a0f] Plaintext left = T
2010-12-12 16:08:33.424 Cipher[27523:a0f] Encoded text = GE
2010-12-12 16:08:33.424 Cipher[27523:a0f] **********
2010-12-12 16:08:33.425 Cipher[27523:a0f] Stripped character = T
2010-12-12 16:08:33.425 Cipher[27523:a0f] Plaintext left =
2010-12-12 16:08:33.426 Cipher[27523:a0f] Encoded text = GEX
2010-12-12 16:08:33.426 Cipher[27523:a0f] **********

Prototyping Your Program
For small projects, you can start creating a simple version of your program right away.

However, for a large project, you may want to take one additional step and create a

prototype of your program.

Just as architects often build miniature skyscrapers out of cardboard or plastic to help

them visualize the final appearance of a project, so do computer programmers create a

prototype of their program using a variety of tools. When you create a prototype of a

program, your prototype simply shows what the program will look like and how it will

behave, but your prototype isn’t an actual program.

For example, you might create a rough design of your program using a presentation

program like PowerPoint or Keynote where each slide represents a different part of your

user interface. Clicking various commands or buttons displays a different slide,

depending on how your program works.

CHAPTER 22: Designing Your Own Programs 358

Prototyping lets potential users see and use your program so they can provide feedback

on the user interface, what features the program needs, and what features may need to

be changed or eliminated altogether.

Other prototyping tools might include simple drawing and paint programs or web page–

designing programs that let you create a series of web pages that represent different

appearances of your working program. You could even create a prototype of your

program by simply drawing pictures on different sheets of paper.

The goal of a prototype is to create the appearance and behavior of your program

without forcing you to spend a lot of time creating that prototype so it doesn’t matter

how you create your prototype. This lets you freely modify and change the prototype

until it behaves and looks exactly the way you want. After you’ve finalized the design of

your program by creating a prototype, then you’ll be ready to create your actual

program.

Writing and Testing Your Program
You’re not going to write your entire program in one try. Instead, you’ll gradually create a

program and add more features one by one until you finally create the program you

initially envisioned. Think of creating a program like shaping a clay sculpture. You would

never take a chunk of clay, throw it on a table, and expect it to be perfect right away.

Instead, you’d take that lump of clay and gradually shape it into the form you want. You

might add a little extra clay here, remove a chunk of clay there, and move clay to one

spot and slap it on a different spot.

In the same way that you’d create a work of art by starting with a lump of clay and

gradually shaping it into your final design, so will you gradually create your program a

little bit at a time. Testing your program doesn’t mean waiting until the whole thing is

complete. Instead, testing means you create a little bit of your program, test to make

sure that the little bit you added works as expected, and then add another little bit to

your program and test how that newly added portion of your program works.

Each time you add a new portion to your program, you’ll need to test that new portion to

make sure it works correctly and then test how that new portion interacts with the rest of

your program.

When writing your program, divide your program into specialized parts and reusable

parts. A specialized part of your program might perform unique calculations, such as a

stock market prediction program that uses an algorithm to analyze stock price data and

calculate which stocks will likely rise in the near future.

A reusable part of your program might be the part of your program that retrieves data

from the Internet, such as stock market data. Retrieving data from the Internet might be

handy to use in another program, such as one that needs to retrieve updated weather

reports from the Internet. By clearly dividing your program into specialized and reusable,

general portions, you can gradually create a library of your general-purpose code so you

can plug each bit into future programs, allowing you to create new programs quickly,

easily, and reliably.

CHAPTER 22: Designing Your Own Programs 359

By building your program slowly and testing each newly added feature along the way,

you can catch problems as they occur and fix them before you rush ahead and create

the entire program and wind up spending all your time tracking down and fixing bugs in

your software.

The first goal of your program is to get it to work. Once you’ve gotten one part of your

program to work, you can see what needs to be fixed or modified. Maybe your program

doesn’t look the way you wanted, so you might need to change the user interface.

Maybe the program runs too slowly. Then you might need to use a different data

structure or create a better algorithm.

The more testing you can do, the better, so you can spot problems with your program

before releasing it to your customers and users. (Fixing a bug-ridden program after

you’ve sold or distributed it to people is rarely the quickest way to make others happy or

look favorably at your programming abilities.)

When you’ve created a workable program with the majority of its features available, you

might start testing your program with other people so they can give you feedback on

what they like, what they didn’t like, and what changes you should make. At this point,

you can choose to make those changes (or ignore them if you have a good reason for

doing so), and then after you modify your program, you can repeat the whole testing

cycle all over again.

Repeat several times, and you’ll gradually create a working program that you can give

away or sell to others. The whole process of designing, creating, and testing a program

can be frustrating, fun, tiresome, and challenging all at the same time.

The more programs you create, the more confident you’ll get and the more experience

you’ll have to avoid problems and take shortcuts to simplify your program. Like any skill,

designing, writing, and testing a program may seem hard and confusing at first, but after

enough practice, you’ll soon find that it’s not as difficult as you might have initially

thought.

Summary
The most important task of writing a program is identifying the most important problem

to solve. Once you’ve identified an important problem, you need to determine if it’s even

possible for a computer program to solve it. If so, then you’ll be ready to start designing

your program.

Designing your program is more than just designing a pretty user interface. The design

of your program includes its structure, the data structures you use, the way you divide it

into multiple objects, and the algorithm you use to solve a particular problem. None of

these structural designs of your program may be readily seen by the user, but if they’re

missing or faulty, the user will know it through a slow, unresponsive, flawed program

that doesn’t work correctly.

CHAPTER 22: Designing Your Own Programs 360

Writing your program should be the last task you tackle. Before you write even one line

of code, it’s best to plan ahead how your program will work, how it will solve a particular

problem, and, more importantly, what problem your program will solve in the first place.

Your program’s user interface is all that people will see of your program, so it’s

important to design one that’s easy to understand and use. Most of the time, designing

a user interface involves using common interface elements such as dialog boxes,

buttons, pull-down menus, and windows. However, you may want to customize your

program’s user interface to mimic a feature found in another program or to mimic a

physical object that your program mimics such as sticky notes or a notepad.

Once you know the type of data your program needs to accept and manipulate, you can

choose the best data structure to hold that data. By choosing the correct data structure,

you can simplify the way your program works.

Besides choosing the right data structure, you also need to define the algorithm that

your program will use to solve a problem, step-by-step. There is no one perfect

algorithm for any program, so you just need to worry about creating a simple algorithm

that works.

After you’ve decided on the rough design of your program, you may need to create a

simple prototype to give potential users a chance to see what your program can do and

how it might look and behave. A prototype can be as simple as drawings on a piece of

paper or as sophisticated as a simplified version of your program running on a

computer.

Prototyping helps users determine whether your program might be useful and what

changes (if any) you might need to make before actually writing your program. After

examining your prototype and making any final changes to your design or user interface,

you can start writing the actual code to make your program work.

When creating a program, do it a little at a time, and test each new feature as you go

along. In general, the more you plan ahead, the less time you’ll need to rewrite your

code or redesign your user interface. Instead, you’ll be able to go from a working

prototype to a working program relatively quickly, and the final result will be a working

program that you can sell or give away to others.

361

361

 Chapter

Working with Xcode
The most time-consuming part of creating your program will be writing the Objective-C

code that makes your program do something. Since you’ll be spending much of your

time writing, testing, and rewriting code, you’ll be using Xcode as your primary tool for

hours at a time. Whereas much of this book showed you one way of using Xcode, this

chapter will show you several tips and shortcuts for using Xcode that weren’t covered

previously.

By learning some of Xcode’s hidden features, you can save time and work more

efficiently. The less time you waste wrestling with Xcode, the more time you’ll have to

design, write, test, and market your finished program.

Creating New Folders
A single Xcode project typically consists of several files. To help organize those files,

Xcode automatically creates several folders such as Classes and Resources. As your

program grows in size and complexity, chances are good that even these default folders

will get too cluttered. To solve that problem, you may need to create additional folders.

You can create as many folders as you need and name them anything you want. To

create a new folder, follow these steps:

1. Right-click the folder in which you want to store your newly created folder. A pop-

up menu appears, as shown in Figure 23–1. (If you wanted to create a new folder

inside the Classes folder, right-click the Classes folder. If you right-click your

project name, you’ll be able to create a new folder at the same hierarchical level

as the Classes and Resources folders.)

23

CHAPTER 23: Working with Xcode 362

Figure 23–1. Creating a new folder by right-clicking

2. Choose Add ➤ New Group. Xcode displays your newly created folder called New

Group.

3. Double-click the New Group name. Xcode highlights New Group.

4. Type a new name for your folder. At this point, you can drag and drop files from

other folders and store them in your newly created folder.

NOTE: You can delete a folder at any time by right-clicking that folder to display a pop-up menu
and then choosing Delete. Make sure you really want to delete a folder, because you’ll also

delete any files stored in that folder.

Fast Navigation Shortcuts
One of the biggest problems with creating a project is that your data winds up scattered

all over the place. To navigate from one part of your program to another, you might have

to switch to a different folder, then switch to a different file, then scroll through that file

to find the method you want to edit.

To make navigating through your program faster and easier, Xcode offers pop-up

buttons and icons that let you switch to a different part of your program quickly, as

shown in Figure 23–2.

CHAPTER 23: Working with Xcode 363

=

Figure 23–2. Clicking a pop-up button or icon lets you switch to another part of your program.

Using the File History Pop-Up Button
The File History pop-up button stores a list of all the files you’ve opened. The idea is that

if you opened a file once, you’ll probably want to open and view that file again. Clicking

the File History pop-up button displays a list of your recently opened files along with

options to clear the entire history list or define how many files to store, as shown in

Figure 23–3.

CHAPTER 23: Working with Xcode 364

Figure 23–3. The File History list lets you jump to a previously opened file.

The File History button displays the currently displayed file plus the line number that the

cursor is on, as shown in Figure 23–4.

Figure 23–4. The current file name and line number of the cursor’s location appear on the File History pop-up
button.

Using the Properties and Methods Pop-Up Button
When you’re viewing a file, you may want to jump to a particular variable (property) or

method. Rather than scroll endlessly through the file, you can just click the Properties

and Methods pop-up button and view a list of different items, as shown in Figure 23–5.

CHAPTER 23: Working with Xcode 365

Figure 23–5. You can jump to a specific property or method in a file.

Just click a property or method name and Xcode displays your chosen method or

property.

Using the Classes Menu
If you want to see the class that your currently displayed file is based on, click the

Classes menu, as shown in Figure 23–6.

Figure 23–6. The Classes menu displays the superclass of a file.

Clicking the superclass file displays the Objective-C code for that superclass. In most

cases, you probably won’t modify this Objective-C code (although you could). Instead,

you can study this code to better understand how it works.

Using the Include Menu
Most Objective-C files are interdependent on other files, so if you want to see which files

depend on the currently displayed file, click the Include menu, as shown in Figure 23–7.

Figure 23–7. The Include menu shows your interdependent files.

CHAPTER 23: Working with Xcode 366

Switching Between the .h File and .m File
Every time you create a class, you’re actually creating two files: the header (.h) file and

the implementation (.m) file. Almost every time you change one file, you’ll need to

change the other file. To make switching between the header file and implementation file

easier, you can use the Counterparts icon by following these steps:

1. Open either the .h or .m file of a class.

2. Click the Counterparts icon. If you opened the .h file, the Counterparts icon

displays the accompanying .m file. If you opened the .m file, the Counterparts icon

displays the accompanying .h file.

Making Code Easier to Read
The more Objective-C code you write, the harder it can be to read, let alone understand.

The problem is that more code means more instructions, which means more possible

ways your program can do something wrong.

Ideally, you want to divide large chunks of code into multiple files and then store as little

code as possible in each file to make it easier to read. Since this isn’t always possible,

Xcode offers code folding.

Code folding temporarily collapses code, such as a block of code inside a loop, switch

statement, or a method, as shown in Figure 23–8.

Figure 23–8. Code folding temporarily hides a bracketed block of code.

To fold code, you have three choices:

 Fold (unfold) all methods and functions

 Fold (unfold) a selected block of code, but leave all other blocks of

code unchanged

 Fold (unfold) comments defined by the /* and */ symbols

CHAPTER 23: Working with Xcode 367

Folding (or Unfolding) All Methods and Functions
To fold (or unfold) all methods and functions in a file, follow these steps:

1. Click a file that contains Objective-C code.

2. Choose View ➤ Code Folding ➤ Fold (Unfold) Methods & Functions. All methods

and functions in the currently displayed file get folded (or unfolded).

Folding (or Unfolding) a Single Block of Code
Xcode can fold any bracketed chunk of code inside a method, loop, if statement, or

switch statement. To fold a single block of code in a file, follow these steps:

1. Click a file that contains Objective-C code.

2. Move the cursor anywhere inside the block of code (defined by { } brackets) that

you want to fold.

3. Choose View ➤ Code Folding ➤ Fold. Xcode displays an ellipse symbol in

between curly brackets to identify folded code, as shown in Figure 23–9.

Figure 23–9. An ellipse helps identify folded code.

NOTE: A quick way to fold a block of code is to move the mouse pointer to the left of the method

or function name until a gray arrow appears. Then click that gray arrow to fold your code.

To unfold a block of code, you have two options:

 Click the gray arrow that appears to the left of the folded code

 Click the ellipse symbol of the folded code

Folding (or Unfolding) a Block of Comments
If you used the /* and */ symbols to define multiple lines of comments, you can

selectively fold (unfold) your comment block by following these steps:

1. Click a file that contains Objective-C code.

2. Move the cursor anywhere inside a comment defined by the /* and */ symbols.

3. Choose View ➤ Code Folding ➤ Fold (Unfold) Comment Blocks.

CHAPTER 23: Working with Xcode 368

NOTE: After you have folded a comment block, you can also unfold that comment block by

clicking its ellipse symbol or the gray arrow that appears to the left of the folded comment block.

Unfolding Everything
If you want to unfold every method/function and comment block in a file, follow these

steps:

4. Click a file that contains Objective-C code.

5. Choose View ➤ Code Folding ➤ Unfold All.

Splitting the Xcode Window
Usually the Xcode window displays either your Objective-C code or your user interface,

but not both at the same time. However, you can split the Xcode window in half so you

can see both your user interface and the editor split horizontally to show two different

files containing Objective-C code, as shown in Figure 23–10.

Figure 23–10. The split view of the Xcode window

To split the Xcode window, follow these steps:

1. Click the .h or .m file that you want to view.

2. Click the Split Editor View icon (or click the Close Editor View icon).

CHAPTER 23: Working with Xcode 369

Summary
Xcode provides plenty of features to make programming easier, but you have to find out

what those features are and learn how to use them. Initially as you’re learning to

program the Mac, just focus on learning the basic features of Xcode so you understand

how to write Objective-C code, how to design a user interface, how to connect your

user interface to your Objective-C code, and how to use the built-in classes provided for

you by Apple’s Cocoa framework.

Once you get familiar with these basic steps to Mac programming, then you’ll be more

comfortable exploring Xcode’s other features. By using folders, you can organize your

projects exactly the way you want. Then you can use the various pop-up buttons and

icons to navigate your way around folders, files, and methods so you can quickly find

what you need.

Ideally, you don’t want a single file to get too crowded with code or else it will be harder

to read, understand, and modify later. Since you can’t always avoid this problem, you

can do the next best thing and temporarily hide or fold code so only the method or

function names appear but the actual code that makes those methods or functions work

remains hidden. By selectively folding code, you can hide code that you don’t need to

examine and just focus on the code that you need to look at right now.

If you have a large monitor, you can even split the Xcode window to show two files. This

lets you study two separate files full of Objective-C code.

Of course, you can selectively choose which Xcode features you want to use and ignore

the rest. The more you get comfortable using Xcode, the more you’ll find how Xcode can

make programming even easier and faster than ever before, just as long as you take

time to learn the basics of Mac programming first.

CHAPTER 23: Working with Xcode 370

371

371

 Chapter

Debugging Your Program
Programs rarely work right the first time. In most cases, you’ll need to fix problems as

they occur until your program finally works. However, just because a program seems to

work doesn’t mean that it will work, so that involves more testing and fixing, known as

debugging.

After you’ve debugged your program so that it finally does what it’s supposed to do

without crashing, freezing, or wrecking other files on a computer, you may be ready to

ship it. That’s the point where you have an actual working program that you can sell and

distribute to others.

The main goal of writing any program is to get it to work. Once you get your program to

work, you can stop right there and celebrate. Once you release your program to the

public, your users are sure to find problems or request additional features, so you’ll

constantly need to keep updating and fixing your program over time.

Debugging a Program
Trying to write a program correctly the first time is nearly impossible, especially when

you’re creating anything beyond a trivial program that displays “Hello, world!” on the

screen. The bigger your program, the more potential for errors and the more possible

problems you’ll need to consider.

Debugging any program can be challenging because you may know that your program

isn’t working right, but you may have no idea why it’s not working right or even where to

look for the problem. In general, there are three types of common bugs or errors to look

for:

 Syntax errors

 Logic errors

 Run-time errors

24

CHAPTER 24: Debugging Your Program 372

Syntax Errors
A syntax error occurs whenever you misspell a command or put a punctuation mark or

symbol in the wrong place. In many cases, Xcode can immediately identify the problem,

as shown in Figure 24–1.

Figure 24–1. Xcode can alert you to misspellings or unused variables.

When Xcode highlights a potential problem, it displays a brief message bubble (located

to the far right in Figure 24–1) that explains what the problem might be. In most cases,

this message bubble may seem confusing because whatever error you created may

have affected other parts of your code in an unintended way.

For example, if you forget to type a semicolon at the end of a line, Xcode will treat this

line of code as part of the next line of code. Depending on what commands you’ve

typed on each line, the problem can be fixed just by typing a semicolon in the right

place, but Xcode’s message bubble won’t tell you that.

Some more common types of syntax errors that can affect how your program works

include the following:

 Using = instead of == to compare two values

 Omitting a break statement in a switch statement

 Omitting the @ character when using strings of the NSString class

 Omitting the * symbol when using pointers

 Not creating a matching pair of property variables in the header (.h) file

and defining a synthesized variable in the implementation (.m) file

Using One = Instead of == to Compare Values
The single equal sign (=) assigns a value, while the double equal signs (==) compares two

values. In other programming languages, it’s acceptable to use the single equal sign to

assign values and compare values, but in Objective-C, this will prevent your program

from working. For example, if you wrote the following:

if (myValue = 45)
{
 // Code goes here
}

CHAPTER 24: Debugging Your Program 373

the single equal sign simply assigns the value of 45 to the variable myValue. As a result, it

never compares if 45 is equal to the value stored in the myValue variable, so the code

inside the if statement always runs, which probably isn’t what you want. Because your

code works (but not in the intended way), this type of error can be difficult to identify.

One way to ensure that you don’t accidentally use a single equal sign instead of a

double equal sign is to place an actual value first followed by the variable:

if (45 == myValue)
{
 // Code goes here
}

Now if you mistakenly use a single equal sign, such as (45 = myValue), Xcode will flag

this as an error.

Omitting break Statements in a switch Statement
Omitting the break statement in a switch statement means your code could accidentally

run more lines of code than you wanted. For example, suppose you had the following:

switch (myValue)
 {
 case 45:
 NSLog (@"The value is 45");
 break;
 case -9:
 NSLog (@"The value is -9");
 break;
 default:
 NSLog ("There is no matching value");
 break;
 }

If the value of myValue was 45, the program would just print this:

"The value is 45"

However, if you eliminated all the break statements and the value of myValue was 45, the

program would print the following, which is probably not what you intended:

"The value is 45"
"The value is -9"
"There is no matching value"

Omitting @ and *
To identify a string in Objective-C, you must use the @ symbol in front of the string and

then enclose the string with double quotation marks like this:

@"This is a string"

If you fail to put then @ symbol in front of the string or forget to enclose the string with

double quotation marks, Xcode won’t recognize this as a valid Objective-C string object.

CHAPTER 24: Debugging Your Program 374

Instead, it will treat it as an ordinary C string, which is probably not what you want since

your program won’t work right.

Whenever you use a class, such as NSString or NSWindow, make sure you use the

asterisk (*) symbol to define a pointer. If you omit this asterisk (*) symbol when declaring

a pointer, Xcode won’t run your program.

Omitting Matching Pairs in Header (.h) and Implementation (.m)
Files
Whenever you change something in your header (.h) file, make sure you make any

necessary changes in your corresponding implementation (.m) file (and vice versa).

The header (.h) file typically contains Outlet variable declarations and an accompanying

property declaration of that same variable:

@interface MyTestAppDelegate : NSObject <NSApplicationDelegate> {
 NSWindow *window;
 NSTextField *nameField;
}

@property (retain) IBOutlet NSWindow *window;
@property (nonatomic, retain) IBOutlet NSTextField *nameField;

@end

In this case, window is declared as a pointer to the NSWindow class and then defined as a

property as well. In the implementation (.m) file, you must also define this pointer using

the @synthesize command:

@synthesize window;

To modify a class, you must almost always change both the header (.h) and the

implementation (.m) files. Because making one change involves editing two separate

files, it’s easy to forget to change two different files.

Logic Errors
A logic error can be harder to identify because you think you wrote your code correctly

but your instructions may not be accurate or complete. As a result, logic errors can be

frustrating to track down because you may not know where to look.

The simplest type of logic error is when you declare a variable but never use it, as shown

in Figure 24–2. This won’t stop or affect your program at all, but it’s an error you should

fix just to eliminate unnecessary code.

Figure 24–2. Xcode can identify unused variables.

CHAPTER 24: Debugging Your Program 375

One serious type of logic error occurs when your code does exactly what you want it to

do but your instructions are wrong. For example, suppose you wanted to run a loop

exactly five times using this code:

int i;
for (i = 0; i <= 5; i++)
 {
 NSLog (@"The value of i = %i", i);
 }

This loop actually runs six times like this:

2010-10-08 13:04:47.894 Demo[77461:a0f] The value of i = 0
2010-10-08 13:04:47.898 Demo[77461:a0f] The value of i = 1
2010-10-08 13:04:47.901 Demo[77461:a0f] The value of i = 2
2010-10-08 13:04:47.905 Demo[77461:a0f] The value of i = 3
2010-10-08 13:04:47.906 Demo[77461:a0f] The value of i = 4
2010-10-08 13:04:47.907 Demo[77461:a0f] The value of i = 5

Because you think the loop is repeating five times, you may not even consider that this

loop is doing something wrong until your program runs and starts messing up.

Logic errors can be one of the hardest types of errors to identify and fix because you

already think everything is working but it’s not.

Run-Time Errors
A run-time error occurs only when you actually run your program and your program gets

data that suddenly confuses it. For example, suppose your program takes a loan

amount and divides it by the number of months of the loan, specified by the user. If the

user accidentally types in a zero, your program will try to divide the loan amount by zero,

and division by zero is impossible. As a result, your program won’t work.

Run-time errors are another difficult bug to find and eliminate because your program

may work exactly as you expect—except when the program receives the wrong type of

data. Unless you test for all possible types of data your program might encounter, you

can never be sure that you have eliminated all run-time errors in your program.

To identify possible run-time errors, test your program with a variety of different types of

data, using extreme values. For example, if your program expects a number, see what

happens if you give your program a huge number like 1 billion. Then see what happens

when you give your program an extremely low value such as -0.0000009. If you want

your program to accept data within a limited range, you may need to write extra code to

check that all data falls within this acceptable range.

Viewing Problems When Debugging
When you build your program, Xcode can highlight two types of errors: warnings and

cautions. A warning is an error that can keep your program from working such as a

misspelled variable name or a missing semicolon. A warning is an error that won’t stop

your program from running but could cause problems while your program runs. Xcode

CHAPTER 24: Debugging Your Program 376

highlights warnings with an exclamation mark inside a red circle and identifies cautions

with an exclamation mark inside a yellow triangle.

To view each error message in your program, choose Build ➤ Next/Previous Build

Warning or Error, or press = (Next) or = (Previous).

Simple Debugging Tips
There is no one best way to debug a program because every program and every bug is

different. However, there are some simple tricks and techniques you can use to isolate

problems in your code. Finding the source of the problem is the hardest part. Fixing that

problem, once you’ve identified what’s causing it, is relatively easy in comparison.

Comment Out Your Code
If you suspect that one part of your code might be causing a problem, the simplest way

to test your suspicion is to delete the suspicious code. Of course, if the code wasn’t the

source of the problem, now you have to retype it all back in again.

A simpler solution is to comment out your code. Just turn the suspicious code into a

comment that Xcode will ignore. Now if you test your program and the problem goes

away, you’ll know your commented-out code is the problem. If your program still

messes up, then you’ll know that your commented-out code is not the problem, so you

can examine and comment out another part of your program.

For commenting out one or two lines, you can use the double slash comment symbols:

// int i;
for (i = 0; i <= 5; i++)
 {
 NSLog (@"The value of i = %i", i);
 }

For commenting out multiple lines of code, you can use a matching pair of /* and */

symbols:

/*
int i;
for (i = 0; i <= 5; i++)
 {
 NSLog (@"The value of i = %i", i);
 }
*/

NOTE: You can also highlight multiple lines of code and then press +/ (in other words, press

the Command key followed by the + key followed by the / key).

CHAPTER 24: Debugging Your Program 377

Check the Value of Variables with NSLog
One major source of bugs is when your program somehow changes the value of a

variable in an unexpected way. To determine where your program might be changing a

variable, you can insert NSLog commands in different parts of your program. These NSLog

commands can print out the value of a variable at different points of your program. The

moment you see a value change, then you’ll know approximately where that change

occurred and which code you need to closely examine to identify the source of that

problem.

For example, if you suspect a particular method is inadvertently changing the value of a

variable, you could place an NSLog command before and after the method call like this:

NSLog (@"The value of x = %i", x);
y = calculateResult(x); // suspect method call
NSLog (@"The value of x = %i", x);

If the value of your variable is 10 before the method call and afterward the value of your

variable is 8974 when it should have stayed 10, then you’ll know that your method is

somehow messing up that variable.

Using Breakpoints When Debugging
Ideally to identify problems in your program, you should be able to watch each step of

how the program works and behaves at any given time. That way, you can see whether

your program is skipping some lines of code by mistake or mangling the value of certain

variables in unintended ways.

To give you the ability to examine your code, line by line, Xcode offers breakpoints,

which you can place on an individual line of code. A breakpoint simply tells Xcode to run

your program and stop when it hits a breakpoint.

Once you’re stopped at a breakpoint, you can examine the current value of variables

and then choose to step through your program, line by line, to see how the rest of your

program works.

Placing (and Removing) a Breakpoint
You can place a breakpoint on any line of code, such as the first line of a method. To place
a breakpoint, follow these steps:

1. Click a header (.h) or implementation (.m) file where you want to place a

breakpoint.

2. Click in the vertical gray column that appears to the left of the line of code where

you want to place a breakpoint, as shown in Figure 24–3.

CHAPTER 24: Debugging Your Program 378

Figure 24–3. You can place a breakpoint on a line of code by clicking the left margin.

3. Repeat step 2 for each additional breakpoint you want to add to your code. You

can add as many breakpoints as you want.

NOTE: To remove a breakpoint, just drag it away from the left margin, and when the mouse
pointer displays a puff of smoke icon, release the mouse button to delete your breakpoint, as

shown in Figure 24–4.

Figure 24–4. The puff of smoke icon lets you know that you just removed a breakpoint.

Using the Debugger
The Debugger window gives you the option of watching variables and stepping through

your code after pausing at a breakpoint, as shown in Figure 24–5.

Figure 24–5. The Debugger window can display the value of variables and let you step through your code one line
at a time.

CHAPTER 24: Debugging Your Program 379

To open (or hide) the Debugger window, choose Run ➤ Debugger. If you just want to

step through your code and not watch how any variables change, you can also open the

mini Debugger window by choosing Run ➤ Mini Debugger, as shown in Figure 24–6.

Figure 24–6. The mini Debugger window lets you step through your code one line at a time.

Stepping Through Code
After you place one or more breakpoints in your code and build and run your program,

your code will temporarily pause at a breakpoint, which you can view in the Debugger or

mini Debugger window. At that point, you have several options, as shown in Figure 24–7:

 Restart: Starts your program running from the very beginning.

 Continue: Runs your program to the next breakpoint. If no other

breakpoints exist, it runs your program normally.

 Step Over: Steps through each line of code, skipping over method and

function calls.

 Step Into: Steps through each line of code, but when it reaches a

method or function call, it steps through the code stored in that

method or function.

 Step Out: If you’re currently stepping through code in a method or

function, Step Out returns you to the code immediately after the

method or function call.

CHAPTER 24: Debugging Your Program 380

Figure 24–7. The Continue, Step Over, Step In, and Stop Out icons

To see how the debugger works, follow these steps:

1. Create a new Cocoa Application, and give it a descriptive name like MyTest.

2. Click the MyAppDelegate.m file in Classes folder, and modify the code as follows:

#import "MyTestAppDelegate.h"

@implementation MyTestAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 // Insert code here to initialize your application
 int i;
 for (i = 0; i <= 5; i++)
 {
 NSLog (@"The value of i = %i", i);
 }
}

- (void)dealloc {
 [window release];
 [super dealloc];
}

@end

3. Choose File ➤ Save or press S to save your changes.

4. Click in the left margin of the first line (int i;) under the

applicationDidFinishLaunching method (see Figure 24–4) to set a breakpoint. A

breakpoint arrow appears in the left margin.

5. Chose Run ➤ Debugger to open the Debugger window.

6. Click the Build and Debug button. Xcode highlights a line of code, as shown in

Figure 24–8.

CHAPTER 24: Debugging Your Program 381

Figure 24–8. Xcode highlights your code to show you which line is currently active.

7. Click the Step Over icon to watch Xcode step through your code one line at a

time. Notice that each time you click the Step Over icon, the contents of the i

variable changes.

8. Click the Continue icon. Xcode runs your program from its currently highlighted

line of code to the next breakpoint. If there are no additional breakpoints, the

program runs normally.

9. Quit the program by choosing its Quit command.

By using the debugger, you can step through each line of code and watch how each line

of code may affect your variables. The moment you see that a variable changes

incorrectly, then you can pinpoint the exact line of code that’s causing the error.

Debugging may be tedious and exhausting, but it’s the only way to track down and

eliminate as many bugs as possible in your program. The larger your program, the more

places bugs can possibly hide, and the more bugs you’ll need to track down and wipe

out. Although you may not find and eliminate all possible bugs, make an effort to wipe

out as many as possible, especially the ones causing your program to work incorrectly.

CHAPTER 24: Debugging Your Program 382

Summary
Even the best programmers make mistakes, which makes programming a constant trial-

and-error process as you write your code, test it, and fix any problems with it before

moving on to writing more code. Three common problems with programs are syntax,

logic, and run-time errors.

Syntax errors are typically misspellings or misplaced (or omitted) symbols or punctuation

marks that can keep your program from running at all. Xcode can often identify syntax

errors so you can fix them.

Logic errors are harder to find and isolate because the code may be working perfectly,

but it’s not working the way you thought it would work. As a result, tracking down and

eliminating logic errors is much harder because you first must identify what’s causing

the problem.

Run-time errors are some of the hardest errors to fix because your program may work

perfectly, except when you distribute it to others who use the program in situations that

you never expected or intended. When your program receives data that it doesn’t know

how to handle, it can cause a run-time error. Fixing such run-time errors can be difficult

because you can never anticipate all possible problems your program might face when

in actual use.

When Xcode identifies a problem in your code, it displays a message in the Issues

window. The two types of issues are Warnings and Cautions. A Warning signals a

problem that keeps your program from working at all. A Caution alerts you to a problem

that won’t keep your program from running but may cause unintended problems if you

don’t fix it.

Two simple ways to debug your program involve using comments and printing out

values using the NSLog command. When using the NSLog command, you can view the

printed results by opening the Console window (choose Run ➤ Console).

The Debugger window can display a variable watching window and your code with

breakpoints so you can stop your code at certain points and step through each line to

see how your program works.

When your program is working exactly the way you want, it’s time to distribute it to

others. Then you can sit back and look back on the long journey you took from learning

about programming to writing your own programs to finally distributing your own

programs for others to use. That’s when you’ll know you’re a real programmer.

No single book can teach you all there is to know about programming, so now that

you’ve reached the end of this book, it’s time to start practicing writing your own

programs, learning and sharing tips and ideas with others, and learning as much as you

can from other books or attending conferences.

Since technology is always changing, you’ll always need to keep learning something

new just to keep up. The good news is that nobody can be an expert in everything, but

many people can be experts in their own niche. Even though you may not think you

know enough to be a programming expert, you probably know a lot more than you

CHAPTER 24: Debugging Your Program 383

might think, and if you combine your programming skills with your current knowledge,

you already know more than many people in your field.

Whether you plan on writing programs to sell, create custom programs for your work, or

just enjoy making programs for a hobby, you’ll find that computer programming can be

a never-ending intellectual challenge that can keep you amused and mentally

stimulated.

With your knowledge of Mac OS X programming, you can easily start creating iPhone

and iPad apps. The future belongs to people willing to adapt to change and follow the

market. By knowing how to program in Objective-C and use Xcode, you’ve just moved

yourself into a select group of programmers ready to take advantage of the growing

Mac, iPhone, and iPad markets. Within a short period of time, you may look back and

marvel at how far you’ve come and how much you’ve learned, and it all started with your

initial desire to learn the basics of programming the Mac.

CHAPTER 24: Debugging Your Program 384

385

385

Index

■ Special Characters
- operator, 78
- (subtraction) symbol, 13
& (ampersand) symbol, 193
&& (And) operator, 88–89
symbol, symbols in Objective-C, 68
#define command, 76
#import "Class.h", implementation file, 177
#import <Cocoa/Cocoa.h> header file, 176
#import command, 68
#import directive, 178
#import "MyClass.h" file, 179
% operator, 78
%@ data type, 66
%f data type, 66
%i data type, 66
(id) sender portion, 242
-(id)init implementation file, 177
* (asterisk) symbol

symbols in Objective-C, pointers, 70–71
syntax errors omitting, 373–374

* operator, 78
*myArray pointer, 141
*testObject pointer, 179
/ (division) symbol, 13
/ operator, 78
// symbol, symbols in Objective-C, 68–69
[] symbols, symbols in Objective-C, 69–70
^ (Xor) operator, 90
|| (Or) operator, 89
+ (addition) symbol, 13
+ operator, 78
= (equal sign), 73
= symbol, and syntax errors, 372–373
== symbol, and syntax errors, 372–373

■ A
accessor methods, 196

Action method, 38–40, 42
addButtonWithTitle method, 318
addEntriesFromDictionary method, 162
addItemsWithObjectValues method, 292
addItemsWithTitles method, 272
addition (+) symbol, 13
addObject method, 150–151, 168
addObjectsFromArray method, 168
alert dialog boxes, 315–321

buttons for, 318–321
suppression check box for, 317
text for, 317

alert runModal command, 318
algorithm, for programs

defining, 354–355
overview, 353–354

all-important semicolon, 66
allKeys method, 162–163
alloc method, 179
allowedFilesTypes property, 325, 329
allValues method, 163
Alternate field, 235
Alternate option, Attributes Inspector,

237–238
Alternate pop-up menus, 237
ampersand (&) symbol, 193
anchoring, objects for user interfaces, 227
And (&&) operator, 88–89
App Delegate icon, 219, 243, 245
AppDelegate file, 209–210
AppDelegate.m file, 64–65, 355
appendString method, 136–137
Apple Core Library, 54
Application file option, 217
Application icon, 219
Application template, 22, 331
applicationDidBecomeActive method, 213
applicationDidFinishLaunching method,

64–65, 74, 179–180, 192, 199, 207,
213, 272

Index 386

applicationDidFinishLoading method, 97,
205

applicationWillTerminate method, 213
array index, 146
arrayName, 145
arrays, 139–155

accessing item in, 146–149
adding items to, 149–150
copying dictionaries into, 163–164
counting items in, 140–146
deleting items from, 152–155

all instances of item, 153–155
every item in array, 153
last item in array, 152
using index position, 152

inserting items into, 151–152
arrayWithArray method, 145
arrayWithContentsOfFile method, 145
arrayWithContentsOfURL, 145
arrayWithObjects method, 141–143
assigning data, to variables in Objective-C,

73
asterisk (*) symbol, 71, 116, 192, 197
atIndex method, 137
Attributes Inspector, 234, 241, 270
Attributes Inspector window, 252, 257, 259,

312, 333
Attributes window, 235
Auto Repeats option, Attributes Inspector

window, 312
Autoresizing box, 228
autosizing, objects for user interfaces, 227

■ B
Background property, date picker, 307
Bevel Button, 234
Bezel pop-up menu, 234
blocks of code, folding or unfolding, 367
BOOL keyword, 73
Boolean conditions, 83–84
Boolean data type, 72
Boolean expressions, 84–90

comparison operators for, 86–87
logical operators for, 87–90

! (Not) operator, 88
&& (And) operator, 88–89
(Xor) operator, 90
|| (Or) operator, 89

Boolean variable, 72
Bordered check box, 239

Brain object, 8–9
branches, 83–98

if-else if statements, 92–94
if-else statements, 92
if statements, 90–91
switch statements, 94–98
using Boolean expressions, 84–90

comparison operators for, 86–87
logical operators for, 87–90

branching instructions, 4
break command, 95–96, 102–103, 106
break statements, and syntax errors, 373
breakpoints, debugging programs using,

377–383
creating and removing, 377–378
and Debugger window, 378–379
stepping through code, 379–383

bugs
defined, 5
reducing with object-oriented

programming, 114
Build and Run button, 236, 286
Build menu, 19
built-in classes, 369
buttons, 231–248. See also pop-up buttons

for alert dialog boxes, 318–321
connecting to IBAction, 242–246
creating, 232–234
disconnecting from IBAction, 246–248
images for, 237–239
keystroke combinations for, 241
sound for, 241
title for, 235–237
tooltips for, 240
visual behavior of, 239–240

■ C
C code, 12
Caesar Cipher, 353
calculateValue method, 190, 192, 195
camel case, 72, 181
capitalizedString, 126, 136
case command, 96
changePosition method, 205–207, 209
check Box object, 258, 262
check boxes, 257–262

creating, 257–258
defining state of, 259
title for, 259

checkBox method, 261

Index 387

class file icon, 246, 248
class header (.h) file, 203
class reference screen, 53
classes, 173–201

creating, 174–176
defining, 114–115
files for

deleting, 177–178
explained, 176–177

Hello World example, 178–180
inheritance of, 203–207
methods for, 180–195

passing by reference with, 192–195
passing parameters to, 183–187
returning values from, 188–192

NS classes, methods and properties
available for, 118–122

overview, 113
properties for, 195–201

defining, 196
getting and setting values in,

197–201
Classes folder, 25–26, 64, 75, 175, 361
Classes menu, in Xcode, 365
close icon, 247
Cocoa-Applescript Application, 23
Cocoa Application template, 331
Cocoa Applications icon, 75
Cocoa Applications template, 27
Cocoa framework, 142

classes, 113
reducing bugs with, 114
reusing code with, 114

code completion, preferences in Xcode,
61–62

code folding, 366
color-coding, preferences in Xcode, 59
Columns text box, 252
Columns view, 220
combinations, keystroke, 241
combo boxes, 290–295

adding to user interface, 290–291
list for, 292
retrieving value from, 292–295

Command Line Tool, 24
commands

linking to pull-down menus, 339–341
in programming languages, 12–13

comment symbols (//), 199
commenting code, and debugging

programs, 376

commenting in Objective-C, with // symbol,
68–69

comments, folding or unfolding, 367
comparing, strings, 125
comparison operators, for Boolean

expressions, 86–87
compiler directives, in Objective-C, 68
compiling programs, in Xcode, 26–28
components, of typical program, 14–16
Connections Inspector, 244, 247
Connections Inspector window, 340–341
console, Hello World! example in, 30–33
constants, in Objective-C, 76–78
containsObject method, 167
continue command, 103
Continue icon, 381
Continue option, 379
Control category, 257, 259
controller

defined, 14
program structure, 346

converting strings
to numbers, 127–128
to uppercase and lowercase, 126–127

Core Library, Apple, 54
count method, 167
countBoxes method, 74
counter variable, 195
Counterparts icon, 366
counting items

in arrays, 145–146
in dictionaries, 159
in sets, 167

counting variable, 100, 354
Current option, Attributes Inspector window,

312

■ D
data, for text fields, 289–290
data structure

defined, 139
for programs, 352

data types, 180, 188, 196
date picker, 305–310
Date property, date picker, 307
Debugger Console window, 32–34
Debugger option, 379
Debugger window, 378–379, 382
debugging programs, 371–383

logic errors, 374–375

Index 388

run-time errors, 375
syntax errors, 372–374

omitting @ and *, 373–374
omitting break statements in switch

statement, 373
omitting matching pairs in header (.h)

and implementation (.m) files, 374
one = instead of ==, 372–373

tips for, 376–377
checking value of variables, 377
commenting code, 376

using breakpoints, 377–383
creating and removing, 377–378
and Debugger window, 378–379
stepping through code, 379–383

viewing highlighted errors, 375–376
declaring variables, in Objective-C, 71–73
Delete References button, 178
deleteCharactersInRange method, 133
deleting

data from dictionaries, 161
defined, 209
items from array, 152–155

all instances of item, 153–155
every item in array, 153
last item in array, 152
using index position, 152

part of strings, 133–134
pull-down menus, 335

designing programs, 343–360
algorithm for

defining, 354–355
overview, 353–354

data structure for, 352
identifying problem to solve, 344
program structure for, 345–351

controller, 346
following basic conventions, 348–349
imitating useful features, 349–350
model, 346
using unusual elements, 350–351
view, 346–348

prototyping programs, 357–358
what programs do well, 344–345
writing actual code, 355–357
writing and testing, 358
writing pseudocode, 355

Developer Documentation, 117
Developer Tools Reference Library window,

48–49
dialog boxes, 315–329

alert dialog boxes, 315–321
buttons for, 318–321
suppression check box for, 317
text for, 317

Open panel, 321–327
allowing multiple selections in,

325–327
limiting file types in, 325

Save panel, 327–329
dictionaries

accessing all items in, 165–166
copying, 162–164
counting items in, 159
creating, 158–159
deleting data from, 161
loading data into, 158–159
overview, 157–158
retrieving item from, 160
sorting keys in, 164–165

dictionaryName, 159
dictionaryWithObjectsAndKeys method, 158
Disclosure Button, 233
disclosure triangle, 25, 30, 50
Display property, date picker, 307
displayDialog method, 341
Displaying Errors event, 212
displayMessage method, 181–183, 185–188,

192, 199, 286
displayPanel method, 327
dividing programs, into parts, 5–6
division (/) symbol, 13
do-while loop

overview, 105–106
quitting prematurely, 106–107
skipping in, 107

Documentation icon, 47
Documentation Sets tab, 47–48
dot notation method, 255, 257
dot syntax, 197
double keyword, 72
double quotation marks, 123
doubleValue method, 127
dynamic array, defined, 140
dynamic dictionary, 158

■ E
Edit menu, 19, 332
editors, overview, 17–18
Elements category, 308
Elements property, date picker, 307

Index 389

ellipse symbol, 367
Empty XIB option, 217
Enabled check box, 259
encapsulation, in object-oriented

programming, 9–10
end of code, in Objective-C, 67–68
end of line, in Objective-C, 66–67
endless loops, 100
equal sign (=), 73
event-driven programming, 7
events, 209–214
expression, defined, 85
Eye object, 8

■ F
fast enumeration, defined, 102, 147
fields, 129
File History list, 364
File History pop-up button, in Xcode,

363–364
File menu, 19, 332
file types, limiting

in Open panel, 325
in Save panel, 329

filename string, 323
filenames property, 323
files, for classes

deleting, 177–178
explained, 176–177

File's Owner icon, 219
Finder window, 20
findSelectedButton method, 255–256,

275–276
First Responder icon, 219
fixed value, 76
Flag variable, 85
float keywords, 72
floating-point number, 76, 127
floating-point variable, 72
floatValue method, 127–128
folders, in Xcode, 361–362
Font Manager icon, 219
Fonts & Colors icon, 59
for-in loop, 165, 169
for-in statement, 165, 169
for loop, 100–104

quitting prematurely, 102–103
skipping in, 103–104

for statement, 100
forKey method, 158

Format menu, 332
Framework & Library template, 22
Frameworks folder, 25
frameworks, for languages, 13–14

■ G
garbage collection, defined, 179
Get button, 48
getter method, 40
Good-bye button, 42
Graphical date picker, 305
Graphical option, Attributes Inspector

window, 308
GUI (graphical user interface), 34, 231

■ H
hard-coding, 42
hasPrefix method, 125
hasSuffix method, 125
header (.h) file, 174, 176, 180, 203, 377

and .m files, switching between in
Xcode, 366

and syntax errors, omitting matching
pairs in .m files, 374

Hello World! examples, 29–46
for classes, 178–180
in console, 30–33
with user interface, 33–37
with user interface and button, 37–42

Action method for, 38–40
connecting user interface for, 40–42
Objective-C code for, 38–40

with user interface and customizable
button action, 42–46

help, 47–62
installing, 47–48
for Mac OS X Core Library, 49–54
in Xcode

Help window in, 48–49
for Library windows, 57
Quick Help in, 55–56
searching help in, 54–55
viewing documentation for selected

text, 56
Help Button, 233
help documentation, Xcode, 61
Help menu, 19, 122, 142, 332

Index 390

help screen, NSApplicationDelegate
Protocol Reference, 210–211

Help window, in Xcode, 48–49
Hiding Applications event, 212
hold variable, 192

■ I, J
i (integer) variable, 105
IBAction, and buttons

connecting to, 242–246
disconnecting from, 246–248

IBAction methods, 242, 245–246, 248, 276
IBOutlet variable, 270–272, 292
icons, Xcode, 19
id keyword, 165, 169
IDE (integrated development environment),

17
if statement, 90, 103, 107
if-then statement, 106
Image option, Attributes Inspector, 237–238
images, for buttons, 237–239
implementation file, 38, 115
implementation (.m) file, 174, 176, 180, 193,

377
import keyword, 68
Include menu, in Xcode, 365
increment expression, 100
Increment option, Attributes Inspector

window, 312
indexOfSelectedItem property, 274
inheritance

of classes, 203–207
in object-oriented programming, 11

init method, 178–180
initial value, 100
inputData circle, 45
inserting item, into array, 151–152
insertObject method, 151
insertString method, 137
instantiate, defined, 113
instructions, branching, 4
int command, 116
int keyword, 72
integer (i) variable, 105
integerValue method, 127–128
integrated development environment (IDE),

17
Interface Builder, 18, 34, 37, 215–218, 236
interface objects

in .xib files, 219–220

defined, 218
intersecting sets, 170
intersection operation, 166
intersectsSet method, 170
isEqualToString method, 125
isSubsetOfSet method, 170

■ K
Key Equivalent field, 241, 341
keys, 160, 164–165
keysSortedByValueUsingSelector method,

164
keystroke combinations, 241
Keystroke Equiv. field, 342
keystrokes, assigning to pull-down menus,

341
kLoopCounter value, 78

■ L
Label object, 36, 280–281, 312
labelDynamic IBOutlet, 284
labelDynamic property, 283
labels, 279–286. See also wrapping, labels

adding to user interface, 280–281
text for, 281–286

labelStatic IBOutlet, 285
labelStatic property, 284
LabeltextInput IBOutlet, 285
LabeltextInput property, 285
languages, 11–16

commands in, 12–13
components of typical program, 14–16
frameworks for, 13–14

largeString variable, 133, 136
Launching Applications event, 211
Legs object, 8
length field, for searching in strings,

129–130
length method, 124
length, of strings, 124–125
Library option, 280, 287
Library windows, in Xcode, 57
List view, 220
lists

for combo boxes, 292
for pop-up buttons

adding and deleting items, 267–269
modifying with code, 270–274

Index 391

renaming item in, 270
locate Xcode, 20
location field, for searching in strings, 129
Log screen, 32
logic errors, 371, 374–375, 382
logical operators, for Boolean expressions,

87–90
! (Not) operator, 88
&& (And) operator, 88–89
(Xor) operator, 90
|| (Or) operator, 89

Loop variable, 199
loops, 99–110

do-while loop
overview, 105–106
quitting prematurely, 106–107
skipping in, 107

for loop, 100–104
quitting prematurely, 102–103
skipping in, 103–104

nesting, 107–110
while loop, 104–105

quitting prematurely, 106–107
skipping in, 107

lowercase, converting strings to, 126–127
lowercaseString, 126

■ M
.m (implementation) file, 174, 176, 180, 193,

377
and .h files, switching between in Xcode,

366
and syntax errors, omitting matching

pairs in .h files, 374
Mac OS X Core Library, help for, 49–54
Mac OS X topic, 50
Mac program, 29–30, 33, 46
machine code, 17
main keyword, 64
Main Menu icon, 219–220, 333–334
Main Menu XIB option, 217
main.m file, 64
MainMenu.xib file, 34, 64, 216, 218, 236,

267, 332–335
Managing Active Status event, 211
Managing the Dock Menu event, 212
Managing the Screen event, 212
Managing Windows event, 212
Maximum Date property, date picker, 307

Maximum option, Attributes Inspector
window, 312

membership operation, 166
memory address, defined, 71
memory leak, defined, 179
Menu Item objects, 268, 336, 338
methods, 180–195

defined, 37, 113
for NS classes, 118–122
overriding of, 207–209
passing by reference with, 192–195
passing parameters to, 183–187

multiple parameters, 185
objects as parameters, 185–187

returning values from, 188–192
in Xcode, folding or unfolding, 367

Mini Debugger option, 379
Minimum Date property, date picker, 307
Minimum option, Attributes Inspector

window, 312
misspell a single command, 13
model

defined, 14
program structure, 346

model-view-controller, defined, 345
MoveCar subprogram, 10
moveMe method, 207–209
MoveMonster subprogram, 10
MoveRock subprogram, 10
moving

multiple parameters, 185–186
objects for user interfaces, 226–227
pull-down menus, 333–334

multiple selections, allowing in Open panel,
325–327

multiple subprograms, 5
multiple variables, 129
multiplication (*) symbol, 13
My Test App Delegate icon, 256, 261, 272,

283, 294, 324
myAge variable, 71
myArray list, 292
myCats variable, 74
MyClass class, 182
MyClass file, 207
MyClass init method, 179
MyClass.h file, 181
MyClass.m file, 178, 183, 190
myCombo IBOutlet variable, 295
myCombo variable, 292–293
myLoop variable, 185

Index 392

myName variable, 186
myNumber command, 116
myNumber object, 118
myPopUp IBOutlet, 272
myPopUp pointer, 271
myPosition variable, 205
MyProgramAppDelegate.h file, 68
mySet, 171
MyTest project, 209
MyTestAppDelegate.h file, 242, 254, 260,

271, 282
myValue variable, 373

■ N
nesting loops, 107–110
New Group folder, 362
New Project option, File menu, 22
New Referencing Outlet, 272, 284
NewClass.h file, 206
NewClass.m file, 206
newDictionary, 162
NewsClass file, 207
newString variable, 132
Next/Previous Build Warning or Error option,

376
nib files, 26, 215
nil, 140, 143
NO Boolean value, 170–171
Not (!) operator, 88
NS classes, methods and properties

available for, 118–122
NS prefix, 80, 116, 142
NSAlert class, 315
NSAlertFirstButtonReturn constant, 318
NSAlertSecondButtonReturn constant, 318
NSAlertThirdButtonReturn constant, 318
NSApplication class, 210–211
NSApplicationDelegate Protocol, and

events, 210
NSApplicationDelegate Protocol Reference

help screen, 210–211
NSArray class, 140, 142, 144, 155
NSButtonCell class, 253
NSCancelButton, 322
NSColorPanel class, 238
NSComboBox class, 292
NSComboBoxCell class, 292
NSCriticalAlertStyle alert dialog box, 316
NSDictionary, 158, 162
NSDocument, 174

NSFontManager class, 219
NSInformationalAlertStyle alert dialog box,

316
NSLog commands, 33, 45, 66, 75, 91, 105,

109, 179–180, 377
NSLog keyword, 31
NSMakeRange, 131, 135
NSMatrix class, 253
NSMutableArray class, 140, 149, 155, 272,

292
NSMutableDictionary, 158, 161–162
NSMutableSet, 166, 168
NSMutableString class, 123, 130, 133
NSMutableString variable, 124, 133, 138
NSNotFound value, 129
NSNumber class, 116–119, 141
NSObject class, 144, 174
NSOffState, 259
NSOKButton constant, 322, 327
NSOnState, 259
NSOpenPanel class, 322
NSRange class, 129
NSRange variable, 129
NSSavePanel class, 327
NSSet, 166
NSString class, 116, 123, 374
NSString string, 185
NSString variables, 79–80, 123, 135
NSTextField class, 292
NSTextField *message, 39
NSTextField variable, 289–290, 296
NSUser class, 238
NSViewController, 174
NSWarningAlertStyle alert dialog box, 316
NSWindow class, 374
NSWindowController, 174
numberOfBoxes variable, 74
numbers, converting strings to, 127–128
numberWithFloat method, 117–118
numberWithInt method, 117–118

■ O
Object Attributes window, 236, 270, 274,

276–277
Object Library, 36, 223, 234, 266, 291, 301
object-oriented programming, 8–11

classes, 113–115
encapsulation in, 9–10
inheritance in, 11

Index 393

NS classes, methods and properties
available for, 118–122

objects
creating, 115–116
example program using, 117–118
storing data in, 116–117

polymorphism in, 10–11
reducing bugs with, 114
reusing code with, 114

Object variable, 165
objectAtIndex method, 146
objectForKey method, 160
Objective-C, 63–81

commands, 15, 56
constants in, 76–78
differences on Mac, 63–65
operators in, 78–79
strings in, 79–81
symbols in, 65–71

symbol, 68
* symbol, 70–71
// symbol, 68–69
[] symbols, 69–70
curly bracket symbols, 67–68
' symbol, 66–67

variables in, 71–76
assigning data to, 73
declaring, 71–73
example using, 75–76
scope of, 73–74

objects
creating, 115–116
example program using, 117–118
in Objective-C, [] symbols, 69–70
as parameters, passing to methods,

185–187
properties of, 201
storing data in, 116–117
for user interfaces

adding from library, 221–226
autosizing and anchoring, 227
moving and resizing, 226–227

objectType, 147
OldClass.h file, 204
OldClass.m file, 204
oldDictionary, 162
Open panel, 321–327

allowing multiple selections in, 325–327
limiting file types in, 325

Opening Files event, 212
operators

comparison, 86–87
logical, 87–90

! (Not) operator, 88
&& (And) operator, 88–89
(Xor) operator, 90
|| (Or) operator, 89

in Objective-C, 78–79
Or (||) operator, 89
Organizer window, 50
Other Sources folder, 25, 64
Other template, 23
otherSet, 170–171
Outlets, 38, 43, 294
overriding methods, 207–209

■ P
panes, Xcode, 19
parameters, passing to methods, 183–187

multiple parameters, 185
objects as parameters, 185–187

passing by reference, with methods,
192–195

personalData object, 70
Placeholder field, 289
placeholder objects

in .xib files, 219
defined, 218

placeholder text, 289
pointers, in Objective-C, 70–71
polymorphism, in object-oriented

programming, 10–11
Pop Up Button object, 264
pop-up buttons, 263–277

creating, 266–270
adding and deleting items on list,

267–269
renaming item in list, 270

determining selection, 274
modifying list with code, 270–274
overview, 263–266

portability, defined, 12
Position option, Attributes Inspector,

237–238
position property, 205
precedence, defined, 78
preferences, in Xcode, 59–62

color-coding, 59
customizing editor, 60
using code completion, 61–62

Preferences window, 47–48, 59

Index 394

prefixes, checking for in string, 125–126
principles of programming, 2–11

dividing programs into parts, 5–6
event-driven programming, 7
object-oriented programming, 8–11

encapsulation in, 9–10
inheritance in, 11
polymorphism in, 10–11

PRINT command, 12
printf command, 65–66
Printing event, 212
Product menu, 19
Products folder, 25
program structure, 345–351

controller, 346
following basic conventions, 348–349
imitating useful features, 349–350
model, 346
using unusual elements, 350–351
view, 346–348

programming languages. See languages
ProgramNameAppDelegate file, 219
project files, in Xcode

creating new, 21–24
structure of, 24–26

properties
for classes, 195–201

defining, 196
getting and setting values in,

197–201
defined, 38
for NS classes, 118–122

properties and methods pop-up button, in
Xcode, 364–365

prototyping programs, 357–358
pseudocode, 355
pull-down menus, 331–342

assigning keystrokes to, 341
creating, 335–338
deleting, 335
editing, 332–333
linking commands to, 339–341
moving, 333–334
Xcode, 19

Push Button, 223, 233, 236, 248

■ Q
Q&A help screen, 51
Quartz Composer Application, 23
Quick Help, 55–56

Quit command, 381

■ R
radio buttons

creating, 250–253
defining state of, 253
determining button selected, 253–257
title for, 253

Radio Group, 251, 256–257
range option, 132
rangeOfString method, 129, 133
Received Actions category, 246–247
Received Actions heading, 286
Recessed Button, 233
Reference Library window, 54
Referencing Outlets category, 284
release message, 70
release method, 320
removeAllItems method, 272
removeAllObjects method, 152, 161, 168
removeLastObject method, 152
removeObject method, 152, 168
removeObjectAtIndex method, 152
removeObjectForKey method, 161
repeating code. See loops
repeatLoop variable, 199
replaceCharactersInRange, 131
replaceOccurrencesOfString option, 132
replacing, in strings, 130–133

searching for substring, 132–133
at specific location, 130–132

resizing objects, for user interfaces, 226–227
Resources folder, 25–26, 36, 215–216, 361
Restart option, 379
return command, 188
reusing code, with object-oriented

programming, 114
Round Button, 233–234
Rows text box, 252
Run command, 26
Run menu, 19
run-time errors, 375, 382
runModal method, 322, 327

■ S
Salary variable, 72
Save As dialog box, 30
Save dialog box, 24

Index 395

Save panel, 327–329
Scaling option, Attributes Inspector,

237–238
Scaling pop-up menu, 238
scope, of variables in Objective-C, 73–74
Search field

Organizer window, 119
Reference Library window, 54

searching
help, in Xcode, 54–55
in strings, 129–130

length field for, 129–130
location field for, 129

selected text, viewing documentation for, 56
Selects property, date picker, 307
Sent Actions category, 256, 276
Sent Actions heading, 244, 341
Separator Menu Item object, 269
setAllowsMultipleSelection method, 325
setObject method, 158
sets

accessing all items in, 169–170
adding data to, 168–169
checking for data in, 167–168
counting items in, 167
creating, 166–167
identifying subsets, 170–172
intersecting two sets, 170
loading data into, 166–167
overview, 166
removing data from, 168–169

setStringValue message, 70
setter method, 40
setWithArray method, 167
setWithObjects method, 167
setWithSet method, 166
shortcuts, in Xcode, 362–366

Classes menu, 365
File History pop-up button, 363–364
Include menu, 365
properties and methods pop-up button,

364–365
switching between .h and .m files, 366

signed variable, 72
single class, 352
Single Date option, 308
single-word commands, 69
Size window, 227–228
skipping in loops

do-while loop, 107
for loop, 103–104

while loop, 107
sliders, 300–304

displaying tick marks, 302
value for, defining, 301–302
value of, 303–304

smoke icon, 378
sorting keys, in dictionaries, 164–165
sound, for buttons, 241
Sound pop-up menu, 241
Split Editor View icon, 368
splitting window, in Xcode, 368
square brackets method, 257
Square Button, 233
standard commands, 342
state

of check boxes, 259
of radio buttons, 253

state property, 259
State property, 259
static dictionary, 158
Step Into option, 379
Step Out option, 379
Step Over icon, 381
Step Over option, 379
Stepper object, Object Library, 311
steppers, 310, 314
stepping through code, 379–383
Stickies program, 350
storeMe object, 117
storing data, in objects, 116–117
storing subprograms, 6
string-to-number conversion methods, 128
strings, 123–138

appending substring to, 136–137
checking for prefixes and suffixes,

125–126
comparing, 125
converting

to numbers, 127–128
to uppercase and lowercase,

126–127
declaring variable of, 123–124
deleting part of, 133–134
extracting substring from, 134–136

with location and length, 134–135
with location to end of string,

135–136
inserting string in, 137–138
length of, 124–125
in Objective-C, 79–81
replacing in, 130–133

Index 396

searching for substring, 132–133
at specific location, 130–132

searching in, 129–130
length field for, 129–130
location field for, 129

stringValue property, 118, 281, 286,
289–290, 292–293, 296

stringWithString method, 124
Style property, date picker, 307
Submenu Menu Item object, 269
subprograms, 5–6, 13
subsets, identifying, 170–172
substringFromIndex method, 135–136
substrings

appending to strings, 136–137
extracting from strings, 134–136

with location and length, 134–135
with location to end of string,

135–136
inserting in strings, 137–138

substringWithRange, 134
subtraction (-) symbol, 13
suffixes, checking for in string, 125–126
suppression check box, 317
suppressionButton, 317
switch statements, and syntax errors, 373
symbols, in Objective-C, 65–71

symbol, 68
* symbol, 70–71
// symbol, 68–69
[] symbols, 69–70
curly bracket symbols, 67–68
' symbol, 66–67

Syntax errors, 372–374
omitting @ and *, 373–374
omitting break statements in switch

statement, 373
omitting matching pairs in header (.h)

and implementation (.m) files, 374
one = instead of ==, 372–373

System Plug-In, 22

■ T
Tag field, 257
tag property, NSButtonCell class, 253,

256–257
takeIntegerValueFrom option, 304
targetString variable, 126
template dialog box, 174, 217
tempVar variable, 190, 192

Terminating Applications event, 211
Test App Delegate icon, 244, 276
testing programs, 358
testMessage IBAction method, 245
testObject.loopVar, 199
TestProgramAppDelegate.m file, 39
text

for alert dialog boxes, 317
for labels, 281–286
in text fields, 289

Text Editing icon, 60
text editor, 17
Text Field object, 289
text fields, 287–290. See also wrapping, text

fields
adding to user interface, 287–288
retrieving data from, 289–290
text in, 289

Text property, date picker, 307
textField object, 70
textInput variable, 290
Textual date picker, 305
Textual with Stepper date picker, 305
tick marks, for sliders, 302
title

for buttons, 235–237
for check boxes, 259
for radio buttons, 253

Title field, 236, 270
Title property, 253–255, 274, 281, 289
Title value, 274
Toggle icon, 220
Toggle option, 248
tools, 17–28

editors, overview, 17–18
Xcode, 18–28

compiling program in, 26–28
creating new project in, 21–24
project files in, 24–26
running, 20–21
user interface for, 19

Tools Library, 37
tooltips, for buttons, 240
Transparent check box, 239, 253
Trash button, 178
Treads object, 8
Type pop-up menu, 239–240

■ U
union operation, 166

Index 397

unsigned variable, 73
uppercase, converting strings to, 126–127
uppercaseString, 126
URL.lastPathComponent property, 327
user interfaces, 215–229

and .xib files, 218–221
interface objects in, 219–220
placeholder objects in, 219
views of, 220–221

for combo boxes, adding, 290–291
Hello World! example with button,

33–37, 42–46
Action method for, 38–40
connecting user interface for, 40–42
Objective-C code for, 38–40

Interface Builder for, 215–218
labels for, adding, 280–281
objects for

adding from library, 221–226
autosizing and anchoring, 227
moving and resizing, 226–227

text fields for, adding, 287–288
for Xcode, 19

■ V
Value Wraps option, Attributes Inspector

window, 311
values

for combo boxes, retrieving, 292–295
for properties, getting and setting,

197–201
returning from methods, 188–192
for sliders, 301–310

variables
checking value of, 377
declaring string, 123–124
in Objective-C, 71–76

assigning data to, 73
declaring, 71–73
example using, 75–76
scope of, 73–74

VariableTest program, 101
VariableTest project, 75, 77, 80, 91
VariableTestAppDelegate.h file, 75
VariableTestAppDelegate.m file, 75, 77, 80,

91, 97, 100, 108, 117, 207
View menu, 19, 332
View Mode icon, 220
View XIB option, 217

views
of .xib files, 220–221
program structure, 346–348

visual behavior, of buttons, 239–240
void data type, 188
-(void)dealloc, 177

■ W
while loop

overview, 104–105
quitting prematurely, 106–107
skipping in, 107

Window icon, 219, 222, 236
Window menu, 19, 332
window, Xcode, 24, 31, 108, 368
Window XIB option, 217
withString option, 131–132
wrapping

labels, 295–297
text fields, 295–297

Wrapping Text Field icon, 224–225
writing code

actual code, 355–357
pseudocode, 355

■ X
Xcode, 18–28, 361–369

blocks of code in, folding or unfolding,
367

comments in, folding or unfolding, 367
compiling program in, 26–28
creating folders in, 361–362
help in

documentation, 61
Help menu, 122, 142
Help window in, 48–49
for Library windows, 57
Quick Help in, 55–56
searching help in, 54–55
viewing documentation for selected

text, 56
methods in, folding or unfolding, 367
preferences in, 59–62

color-coding, 59
customizing editor, 60
using code completion, 61–62

project files in
creating new, 21–24

Index 398

structure of, 24–26
running, 20–21
shortcuts in, 362–366

Classes menu, 365
File History pop-up button, 363–364
Include menu, 365
properties and methods pop-up

button, 364–365
switching between .h and .m files,

366
splitting window in, 368
unfolding everything in, 368
user interface for, 19

Xcode dialog box, 22
Xcode icon, 21
Xcode Preferences window, 47–48

Xcode window, 24, 31, 108, 368
.xib files, 218–221

creating, 216–218
Interface Builder, 300
interface objects in, 219–220
placeholder objects in, 219
views of, 220–221

XOR cipher, 90
Xor () operator, 90

■ Y, Z
YES Boolean value, 170–171

yourAge variable, 76

	Contents at a Glance
	Contents
	About the Author
	About the TechnicalReviewer
	Acknowledgments
	Introduction
	Code Conventions Used in This Book
	What to Expect from This Book

	Understanding Programming
	Programming Principles
	Dividing Programs into Parts
	Event-Driven Programming
	Object-Oriented Programming

	Understanding Programming Languages
	The Building Blocks of Programming Languages
	Programming
	Frameworks
	Mac Programming Today

	Summary

	Understanding Apple’s Programming Tools
	Understanding Editors
	Understanding Xcode
	Deciphering the Xcode User Interface
	Running Xcode
	Creating a New Project in Xcode
	Examining Project Files in Xcode
	Compiling a Program

	Summary

	The Basic Steps to Creating a Mac Program
	A Bare-Bones Program Example
	A Simple User Interface Example
	An Interactive User Interface Example
	Writing Objective-C Code
	Connecting the User Interface

	An Advanced Interactive User Interface Example
	Summary

	Getting Help
	Installing Help Topics
	Getting Help About Xcode
	Getting Help About Core Library
	Searching for Help
	Getting Quick Help
	Viewing Documentation for Selected Text
	Getting Help with Library Windows
	Help While Writing Code
	Color-Coding
	Customizing the Editor
	Using Code Completion

	Summary

	Learning Objective-C
	Differences in Writing a Mac Objective-C Program
	Understanding Objective-C Symbols
	Defining the End of Each Line with a Semicolon
	Defining the Beginning and End of Code with Curly Brackets
	Defining Compiler Directives with the # Symbol
	Defining Comments with //
	Identifying Objects with [and]
	Defining Pointers with *

	Manipulating Data with Variables
	Declaring Variables
	Assigning Data to a Variable
	The Scope of a Variable
	A Program Example Using Variables

	Using Constants
	Using Mathematical Operators
	Using Strings
	Summary

	Making Decisions with Branches
	Understanding Boolean Expressions
	Boolean Comparison Operators
	Boolean Logical Operators

	Branches
	The Simplest if Statement
	Following Multiple Instructions in an if Statement
	The if-else Statement
	The if-else if Statement
	The switch Statement

	Summary

	Repeating Code with Loops
	Loops That Run a Fixed Number of Times
	Quitting a for Loop Prematurely
	Skipping in a for Loop

	Loops That Run Zero or More Times
	The while Loop
	The do-while Loop
	Quitting a while or do-while Loop Prematurely
	Skipping a while or do-while Loop

	Nested Loops
	Summary

	Understanding the Cocoa Framework
	An Overview of How Object-Oriented Programming Works
	Starting with a Class
	Reducing Bugs
	Reusing Code
	Defining Classes

	Creating an Object
	Storing Data in an Object
	A Sample Program for Manipulating Objects
	Looking Up Method and Property Names for NS Classes
	Summary

	Manipulating Strings
	Declaring a String Variable
	Getting the Length of a String
	Comparing Two Strings
	Checking for Prefixes and Suffixes
	Converting to Uppercase and Lowercase
	Converting Strings to Numbers
	Searching for a Substring
	The location Field
	The length Field

	Searching and Replacing
	Replacing Part of a String at a Specific Location
	Searching for and Replacing Part of a String

	Deleting Part of a String
	Extracting a Substring
	Extracting a Substring with a Location and Length
	Extracting a Substring to the End of a String

	Appending a Substring
	Inserting a String
	Summary

	Arrays
	Creating an Array
	Finding the Right Method to Use
	Storing Objects in an Array
	Additional Methods for Filling an Array

	Counting the Items Stored in an Array
	Accessing an Item in an Array
	Accessing All Items in an Array
	Adding Items to an Array
	Inserting Items into an Array
	Deleting Items from an Array
	Deleting the Last Item in an Array
	Deleting an Item from a Specific Index Position
	Deleting Every Item from an Array
	Deleting All Instances of an Item from an Array

	Summary

	Dictionaries and Sets
	Dictionary Basics
	Creating and Putting Data in a Dictionary
	Counting the Items Stored in a Dictionary
	Retrieving an Item from a Dictionary
	Deleting Data from a Dictionary
	Copying a Dictionary
	Copying Dictionary Data Into an Array
	Sorting Keys
	Access All Items in a Dictionary
	Using Sets
	Creating and Putting Data in a Set
	Counting the Number of Items in a Set
	Checking Whether Data Is in a Set
	Adding and Removing Data in a Set
	Accessing All Items in a Set
	Getting the Intersection of Two Sets
	Identifying a Subset of a Set
	Summary

	Creating Classes and Objects
	Creating a Class
	Understanding the Code in a Class
	Deleting Class Files
	A Program Example of a Class
	Creating Methods
	Passing Parameters
	Returning Values from a Method
	Passing by Reference

	Creating Class Properties
	Defining Properties
	Accessing and Getting Values in Properties

	Summary

	Inheritance, Method Overriding, and Events
	Object Inheritance
	Method Overriding
	Responding to Events
	Understanding the Application Delegate

	Summary

	Creating a User Interface
	Getting to Know Interface Builder
	Creating a New User Interface .xib File

	Understanding the Parts of a .XIB File
	Placeholder Objects
	Interface Objects
	Toggling the View of Placeholder and Interface Objects

	Designing a User Interface
	Customizing User Interface Objects
	Moving and Resizing User Interface Objects
	Autosizing and Anchoring User Interface Objects

	Summary

	Choosing Commands with Buttons
	Creating a Button
	Creating a Button Title
	Adding a Graphic Image
	Customizing the Visual Behavior of a Button
	Making Buttons Easier to Use
	Creating Tooltips
	Adding Sound
	Choosing a Button with a Keystroke Combination

	Connecting a Button to an IBAction
	Alternate Dragging Option

	Breaking a Link to an IBAction Method
	Summary

	Making Choices with Radio Buttons and Check Boxes
	Radio Buttons
	Creating and Adding Radio Buttons
	Creating a Radio Button Title
	Defining a Radio Button’s State

	Determining Which Radio Button a User Selected
	Check Boxes
	Creating Check Boxes
	Defining a Check Box’s Title and State

	Summary

	Making Choices with Pop-Up Buttons
	Pop-Up Button Basics
	Creating a Pop-Up Button List in Interface Builder
	Adding (and Deleting) Items on a Pop-Up Button List
	Renaming an Item in a Pop-Up Button List

	Modifying a Pop-Up Button’s List with Code
	Determining What a User Selected
	Summary

	Inputting and Outputting Data with Labels, Text Fields, and Combo Boxes
	Using Labels
	Adding a Label to Your User Interface
	Editing Text on a Label

	Using Text Fields
	Adding a Text Field to Your User Interface
	Editing Text in a Text Field
	Retrieving Data from a Text Field

	Using Combo Boxes
	Adding a Combo Box to Your User Interface
	Creating a List for a Combo Box
	Retrieving a Value from a Combo Box

	Wrapping Labels and Text Fields
	Summary

	Inputting Data with Sliders, Date Pickers, and Steppers
	Using Sliders
	Defining Values
	Displaying Tick Marks
	Retrieving and Displaying a Slider’s Value

	Using a Date Picker
	Retrieving a Date from a Date Picker

	Using Steppers
	Summary

	Using Built-In Dialog Boxes
	Using Alert Dialog Boxes
	Displaying Text on a Dialog Box
	Displaying a Suppression Check Box
	Displaying Buttons on a Dialog Box

	Creating an Open Panel
	Limiting File Types
	Allowing Multiple File Selections

	Creating a Save Panel
	Limiting File Types

	Summary

	Creating Pull-Down Menus
	Editing Pull-Down Menus
	Editing a Menu or Menu Item
	Moving a Menu or Menu Item
	Deleting Menus and Menu Items
	Creating New Menus and Menu Items

	Linking Menu Commands
	Assigning Keystrokes to a Menu Item
	Summary

	Designing Your Own Programs
	Identifying the Right Problem
	What Programs Do Well
	Designing the Program Structure
	The Model
	The Controller
	The View
	Be Conventional
	Be Imitative
	Be Unusual

	Thinking in Objects
	Picking a Data Structure
	Creating an Algorithm
	Defining an Algorithm
	Writing Pseudocode
	Writing Actual Code
	Prototyping Your Program
	Writing and Testing Your Program

	Summary

	Working with Xcode
	Creating New Folders
	Fast Navigation Shortcuts
	Using the File History Pop-Up Button
	Using the Properties and Methods Pop-Up Button
	Using the Classes Menu
	Using the Include Menu
	Switching Between the .h File and .m File

	Making Code Easier to Read
	Folding (or Unfolding) All Methods and Functions
	Folding (or Unfolding) a Single Block of Code
	Folding (or Unfolding) a Block of Comments
	Unfolding Everything

	Splitting the Xcode Window
	Summary

	Debugging Your Program
	Debugging a Program
	Syntax Errors
	Logic Errors
	Run-Time Errors

	Viewing Problems When Debugging
	Simple Debugging Tips
	Comment Out Your Code
	Check the Value of Variables with NSLog

	Using Breakpoints When Debugging
	Placing (and Removing) a Breakpoint
	Using the Debugger
	Stepping Through Code

	Summary

	Index
	Special Characters
	A
	B
	C
	D
	E
	G
	F
	H
	I, J
	K
	L
	M
	N
	O
	P
	R
	Q
	S
	T
	U
	W
	V
	X
	Y, Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

