


 
First Edition, 2012 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISBN 978-81-323-4264-9                                                                                                                               
                                                                                                                                
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© All rights reserved. 
 
 
Published by: 
White Word Publications 
4735/22 Prakashdeep Bldg, 
Ansari Road, Darya Ganj, 
Delhi - 110002 
Email: info@wtbooks.com 



 
Table of Contents 

 
Introduction 

Chapter 1- Anisotropic Filtering & Ambient Occlusion 

Chapter 2 - Binary Space Partitioning 

Chapter 3 - Bump Mapping 

Chapter 4 - Global Illumination & Catmull–Clark Subdivision Surface 

Chapter 5 - Level of Detail 

Chapter 6 - Non-Uniform Rational B-Spline 

Chapter 7 - Normal Mapping & Mipmap 

Chapter 8 - Particle System & Painter's Algorithm 

Chapter 9 - Phong Shading 

Chapter 10 - Path Tracing 

Chapter 11 - Photon Mapping 

Chapter 12 -3D Projection 

Chapter 13 - Radiosity (3D Computer Graphics) 

Chapter 14 - Reflection Mapping & Reflection (Computer Graphics) 

Chapter 15 - Rendering (Computer Graphics) 

 

 



Introduction 
 
 
 
 
 
 
 

 
3D computer graphics 

3D rendering is the 3D computer graphics process of automatically converting 3D wire 
frame models into 2D images with 3D photorealistic effects on a computer. 

Rendering methods 

Rendering is the final process of creating the actual 2D image or animation from the 
prepared scene. This can be compared to taking a photo or filming the scene after the 
setup is finished in real life. Several different, and often specialized, rendering methods 
have been developed. These range from the distinctly non-realistic wireframe rendering 
through polygon-based rendering, to more advanced techniques such as: scanline 
rendering, ray tracing, or radiosity. Rendering may take from fractions of a second to 
days for a single image/frame. In general, different methods are better suited for either 
photo-realistic rendering, or real-time rendering. 



Real-time 

 
 

An example of a ray-traced image that typically takes seconds or minutes to render. 

Rendering for interactive media, such as games and simulations, is calculated and 
displayed in real time, at rates of approximately 20 to 120 frames per second. In real-time 
rendering, the goal is to show as much information as possible as the eye can process in a 
30th of a second (or one frame, in the case of 30 frame-per-second animation). The goal 
here is primarily speed and not photo-realism. In fact, exploitations can be applied in the 
way the eye 'perceives' the world, and as a result the final image presented is not 
necessarily that of the real-world, but one close enough for the human eye to tolerate. 
Rendering software may simulate such visual effects as lens flares, depth of field or 
motion blur. These are attempts to simulate visual phenomena resulting from the optical 
characteristics of cameras and of the human eye. These effects can lend an element of 
realism to a scene, even if the effect is merely a simulated artifact of a camera. This is the 



basic method employed in games, interactive worlds and VRML. The rapid increase in 
computer processing power has allowed a progressively higher degree of realism even for 
real-time rendering, including techniques such as HDR rendering. Real-time rendering is 
often polygonal and aided by the computer's GPU. 

Non real-time 

 
 

Computer-generated image created by Gilles Tran. 

Animations for non-interactive media, such as feature films and video, are rendered much 
more slowly. Non-real time rendering enables the leveraging of limited processing power 
in order to obtain higher image quality. Rendering times for individual frames may vary 
from a few seconds to several days for complex scenes. Rendered frames are stored on a 
hard disk then can be transferred to other media such as motion picture film or optical 
disk. These frames are then displayed sequentially at high frame rates, typically 24, 25, or 
30 frames per second, to achieve the illusion of movement. 

When the goal is photo-realism, techniques such as ray tracing or radiosity are employed. 
This is the basic method employed in digital media and artistic works. Techniques have 
been developed for the purpose of simulating other naturally-occurring effects, such as 
the interaction of light with various forms of matter. Examples of such techniques include 
particle systems (which can simulate rain, smoke, or fire), volumetric sampling (to 
simulate fog, dust and other spatial atmospheric effects), caustics (to simulate light 



focusing by uneven light-refracting surfaces, such as the light ripples seen on the bottom 
of a swimming pool), and subsurface scattering (to simulate light reflecting inside the 
volumes of solid objects such as human skin). 

The rendering process is computationally expensive, given the complex variety of 
physical processes being simulated. Computer processing power has increased rapidly 
over the years, allowing for a progressively higher degree of realistic rendering. Film 
studios that produce computer-generated animations typically make use of a render farm 
to generate images in a timely manner. However, falling hardware costs mean that it is 
entirely possible to create small amounts of 3D animation on a home computer system. 
The output of the renderer is often used as only one small part of a completed motion-
picture scene. Many layers of material may be rendered separately and integrated into the 
final shot using compositing software. 

Reflection and shading models 

Models of reflection/scattering and shading are used to describe the appearance of a 
surface. Although these issues may seem like problems all on their own, they are studied 
almost exclusively within the context of rendering. Modern 3D computer graphics rely 
heavily on a simplified reflection model called Phong reflection model (not to be 
confused with Phong shading). In refraction of light, an important concept is the 
refractive index. In most 3D programming implementations, the term for this value is 
"index of refraction," usually abbreviated "IOR." Shading can be broken down into two 
orthogonal issues, which are often studied independently: 

 Reflection/Scattering - How light interacts with the surface at a given point 
 Shading - How material properties vary across the surface 

Reflection 

 
 

The Utah teapot 



Reflection or scattering is the relationship between incoming and outgoing illumination at 
a given point. Descriptions of scattering are usually given in terms of a bidirectional 
scattering distribution function or BSDF. Popular reflection rendering techniques in 3D 
computer graphics include: 

 Flat shading: A technique that shades each polygon of an object based on the 
polygon's "normal" and the position and intensity of a light source. 

 Gouraud shading: Invented by H. Gouraud in 1971, a fast and resource-conscious 
vertex shading technique used to simulate smoothly shaded surfaces. 

 Texture mapping: A technique for simulating a large amount of surface detail by 
mapping images (textures) onto polygons. 

 Phong shading: Invented by Bui Tuong Phong, used to simulate specular 
highlights and smooth shaded surfaces. 

 Bump mapping: Invented by Jim Blinn, a normal-perturbation technique used to 
simulate wrinkled surfaces. 

 Cel shading: A technique used to imitate the look of hand-drawn animation. 

Shading 

Shading addresses how different types of scattering are distributed across the surface 
(i.e., which scattering function applies where). Descriptions of this kind are typically 
expressed with a program called a shader. (Note that there is some confusion since the 
word "shader" is sometimes used for programs that describe local geometric variation.) A 
simple example of shading is texture mapping, which uses an image to specify the diffuse 
color at each point on a surface, giving it more apparent detail. 

Transport 

Transport describes how illumination in a scene gets from one place to another. Visibility 
is a major component of light transport. 



Projection 

 
 

Perspective Projection 

The shaded three-dimensional objects must be flattened so that the display device - 
namely a monitor - can display it in only two dimensions, this process is called 3D 
projection. This is done using projection and, for most applications, perspective 
projection. The basic idea behind perspective projection is that objects that are further 
away are made smaller in relation to those that are closer to the eye. Programs produce 
perspective by multiplying a dilation constant raised to the power of the negative of the 
distance from the observer. A dilation constant of one means that there is no perspective. 
High dilation constants can cause a "fish-eye" effect in which image distortion begins to 
occur. Orthographic projection is used mainly in CAD or CAM applications where 
scientific modeling requires precise measurements and preservation of the third 
dimension. 
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Occlusion 

 

 

 

Anisotropic Filtering 

 
 
An illustration of texture filtering methods showing a trilinear mipmapped texture on the 
left and the same texture enhanced with anisotropic texture filtering on the right. 

In 3D computer graphics, anisotropic filtering (abbreviated AF) is a method of 
enhancing the image quality of textures on surfaces that are at oblique viewing angles 
with respect to the camera where the projection of the texture (not the polygon or other 
primitive on which it is rendered) appears to be non-orthogonal (thus the origin of the 
word: "an" for not, "iso" for same, and "tropic" from tropism, relating to direction; 
anisotropic filtering does not filter the same in every direction). 

Like bilinear and trilinear filtering Anisotropic filtering eliminates aliasing effects, but 
improves on these other techniques by reducing blur and preserving detail at extreme 
viewing angles. 



Anisotropic filtering is relatively intensive (primarily memory bandwidth and to some 
degree computationally, though the standard space-time tradeoff rules apply) and only 
became a standard feature of consumer-level graphics cards in the late 1990s. Anisotropic 
filtering is now common in modern graphics hardware (and video driver software) and is 
enabled either by users through driver settings or by graphics applications and video 
games through programming interfaces. 

An improvement on isotropic MIP mapping 

Hereafter, it is assumed the reader is familiar with MIP mapping. 

If we were to explore a more approximate anisotropic algorithm, RIP mapping (rectim in 
parvo) as an extension from MIP mapping, we can understand how anisotropic filtering 
gains so much texture mapping quality. If we need to texture a horizontal plane which is 
at an oblique angle to the camera, traditional MIP map minification would give us 
insufficient horizontal resolution due to the reduction of image frequency in the vertical 
axis. This is because in MIP mapping each MIP level is isotropic, so a 256 × 256 texture 
is downsized to a 128 × 128 image, then a 64 × 64 image and so on, so resolution halves 
on each axis simultaneously, so a MIP map texture probe to an image will always sample 
an image that is of equal frequency in each axis. Thus, when sampling to avoid aliasing 
on a high-frequency axis, the other texture axes will be similarly downsampled and 
therefore potentially blurred. 

With RIP map anisotropic filtering, in addition to downsampling to 128 × 128, images 
are also sampled to 256 × 128 and 32 × 128 etc. These anisotropically downsampled 
images can be probed when the texture-mapped image frequency is different for each 
texture axis and therefore one axis need not blur due to the screen frequency of another 
axis and aliasing is still avoided. Unlike more general anisotropic filtering, the RIP 
mapping described for illustration has a limitation in that it only supports anisotropic 
probes that are axis-aligned in texture space, so diagonal anisotropy still presents a 
problem even though real-use cases of anisotropic texture commonly have such 
screenspace mappings. 

In layman's terms, anisotropic filtering retains the "sharpness" of a texture normally lost 
by MIP map texture's attempts to avoid aliasing. Anisotropic filtering can therefore be 
said to maintain crisp texture detail at all viewing orientations while providing fast anti-
aliased texture filtering. 

Degree of anisotropy supported 

Different degrees or ratios of anisotropic filtering can be applied during rendering and 
current hardware rendering implementations set an upper bound on this ratio. This degree 
refers to the maximum ratio of anisotropy supported by the filtering process. So, for 
example 4:1 (pronounced 4 to 1) anisotropic filtering will continue to sharpen more 
oblique textures beyond the range sharpened by 2:1. 



In practice what this means is that in highly oblique texturing situations a 4:1 filter will 
be twice as sharp as a 2:1 filter (it will display frequencies double that of the 2:1 filter). 
However, most of the scene will not require the 4:1 filter; only the more oblique and 
usually more distant pixels will require the sharper filtering. This means that as the 
degree of anisotropic filtering continues to double there are diminishing returns in terms 
of visible quality with fewer and fewer rendered pixels affected, and the results become 
less obvious to the viewer. 

When one compares the rendered results of an 8:1 anisotropically filtered scene to a 16:1 
filtered scene, only a relatively few highly oblique pixels, mostly on more distant 
geometry, will display visibly sharper textures in the scene with the higher degree of 
anisotropic filtering, and the frequency information on these few 16:1 filtered pixels will 
only be double that of the 8:1 filter. The performance penalty also diminishes because 
fewer pixels require the data fetches of greater anisotropy. 

In the end it is the additional hardware complexity vs. these diminishing returns, which 
causes an upper bound to be set on the anisotropic quality in a hardware design. 
Applications and users are then free to adjust this trade-off through driver and software 
settings up to this threshold. 

Implementation 

True anisotropic filtering probes the texture anisotropically on the fly on a per-pixel basis 
for any orientation of anisotropy. 

In graphics hardware, typically when the texture is sampled anisotropically, several 
probes (texel samples) of the texture around the center point are taken, but on a sample 
pattern mapped according to the projected shape of the texture at that pixel. 

Each anisotropic filtering probe is often in itself a filtered MIP map sample, which adds 
more sampling to the process. Sixteen trilinear anisotropic samples might require 128 
samples from the stored texture, as trilinear MIP map filtering needs to take four samples 
times two MIP levels and then anisotropic sampling (at 16-tap) needs to take sixteen of 
these trilinear filtered probes. 

However, this level of filtering complexity is not required all the time. There are 
commonly available methods to reduce the amount of work the video rendering hardware 
and must do. 

Performance and optimization 

The sample count required can make anisotropic filtering extremely bandwidth-intensive. 
Multiple textures are common; each texture sample could be four bytes or more, so each 
anisotropic pixel could require 512 bytes from texture memory, although texture 
compression is commonly used to reduce this. 



As a video display device can easily contain over a million pixels, and as the desired 
frame rate can be as high as 30–60 frames per second (or more) the texture memory 
bandwidth can become very high very quickly. Ranges of hundreds of gigabytes per 
second of pipeline bandwidth for texture rendering operations is not unusual where 
anisotropic filtering operations are involved. 

Fortunately, several factors mitigate in favor of better performance. The probes 
themselves share cached texture samples, both inter-pixel and intra-pixel. Even with 16-
tap anisotropic filtering, not all 16 taps are always needed. This tapping simplification 
method works because only distant highly oblique pixel fills tend to be highly 
anisotropic. 

 Such anisotropic pixel fills tends to cover small regions of the screen (ie generally 
under 10%). 

 Texture magnification filters (as a general rule) require no anisotropic filtering. 

 

Ambient Occlusion 

Ambient occlusion is a shading method used in 3D computer graphics which helps add 
realism to local reflection models by taking into account attenuation of light due to 
occlusion. Ambient occlusion attempts to approximate the way light radiates in real life, 
especially off what are normally considered non-reflective surfaces. 

Unlike local methods like Phong shading, ambient occlusion is a global method, meaning 
the illumination at each point is a function of other geometry in the scene. However, it is 
a very crude approximation to full global illumination. The soft appearance achieved by 
ambient occlusion alone is similar to the way an object appears on an overcast day. 

Method of implementation 

Ambient occlusion is most often calculated by casting rays in every direction from the 
surface. Rays which reach the background or “sky” increase the brightness of the surface, 
whereas a ray which hits any other object contributes no illumination. As a result, points 
surrounded by a large amount of geometry are rendered dark, whereas points with little 
geometry on the visible hemisphere appear light. 

Ambient occlusion is related to accessibility shading, which determines appearance based 
on how easy it is for a surface to be touched by various elements (e.g., dirt, light, etc.). It 
has been popularized in production animation due to its relative simplicity and efficiency. 
In the industry, ambient occlusion is often referred to as "sky light." 

The ambient occlusion shading model has the nice property of offering a better 
perception of the 3d shape of the displayed objects. This was shown in a paper where the 



authors report the results of perceptual experiments showing that depth discrimination 
under diffuse uniform sky lighting is superior to that predicted by a direct lighting model. 

 
 

ambient occlusion 



 
 

diffuse only 



 
 

combined ambient and diffuse 

The occlusion at a point on a surface with normal can be computed by integrating 
the visibility function over the hemisphere Ω with respect to projected solid angle: 

 

where is the visibility function at , defined to be zero if is occluded in the 
direction and one otherwise, and is the infinitesimal solid angle step of the 
integration variable . A variety of techniques are used to approximate this integral in 
practice: perhaps the most straightforward way is to use the Monte Carlo method by 



casting rays from the point and testing for intersection with other scene geometry (i.e., 
ray casting). Another approach (more suited to hardware acceleration) is to render the 
view from by rasterizing black geometry against a white background and taking the 
(cosine-weighted) average of rasterized fragments. This approach is an example of a 
"gathering" or "inside-out" approach, whereas other algorithms (such as depth-map 
ambient occlusion) employ "scattering" or "outside-in" techniques. 

In addition to the ambient occlusion value, a "bent normal" vector is often generated, 
which points in the average direction of unoccluded samples. The bent normal can be 
used to look up incident radiance from an environment map to approximate image-based 
lighting. However, there are some situations in which the direction of the bent normal is a 
misrepresentation of the dominant direction of illumination, e.g., 

 
 

In this example the bent normal Nb has an unfortunate direction, since it is pointing at an 
occluded surface. 

In this example, light may reach the point p only from the left or right sides, but the bent 
normal points to the average of those two sources, which is, unfortunately, directly 
toward the obstruction. 

Awards 

In 2010, Hayden Landis, Ken McGaugh and Hilmar Koch were awarded a Scientific and 
Technical Academy Award for their work on ambient occlusion rendering. 

 



Chapter 2 

Binary Space Partitioning 

 

 

 
Binary space partitioning (BSP) is a method for recursively subdividing a space into 
convex sets by hyperplanes. This subdivision gives rise to a representation of the scene 
by means of a tree data structure known as a BSP tree. 

Originally, this approach was proposed in 3D computer graphics to increase the rendering 
efficiency by precomputing the BSP tree prior to low-level rendering operations. Some 
other applications include performing geometrical operations with shapes (constructive 
solid geometry) in CAD, collision detection in robotics and 3D computer games, and 
other computer applications that involve handling of complex spatial scenes. 

Overview 

In computer graphics it is desirable that the drawing of a scene be both correct and quick. 
A simple way to draw a scene is the painter's algorithm: draw it from back to front 
painting over the background with each closer object. However, that approach is quite 
limited, since time is wasted drawing objects that will be overdrawn later, and not all 
objects will be drawn correctly. 

Z-buffering can ensure that scenes are drawn correctly and eliminate the ordering step of 
the painter's algorithm, but it is expensive in terms of memory use. BSP trees will split up 
objects so that the painter's algorithm will draw them correctly without need of a Z-buffer 
and eliminate the need to sort the objects; as a simple tree traversal will yield them in the 
correct order. It also serves as a basis for other algorithms, such as visibility lists, which 
attempt to reduce overdraw. 

The downside is the requirement for a time consuming pre-processing of the scene, which 
makes it difficult and inefficient to directly implement moving objects into a BSP tree. 
This is often overcome by using the BSP tree together with a Z-buffer, and using the Z-
buffer to correctly merge movable objects such as doors and characters onto the 
background scene. 



BSP trees are often used by 3D computer games, particularly first-person shooters and 
those with indoor environments. Probably the earliest game to use a BSP data structure 
was Doom. Other uses include ray tracing and collision detection. 

Generation 

Binary space partitioning is a generic process of recursively dividing a scene into two 
until the partitioning satisfies one or more requirements. The specific method of division 
varies depending on its final purpose. For instance, in a BSP tree used for collision 
detection, the original object would be partitioned until each part becomes simple enough 
to be individually tested, and in rendering it is desirable that each part be convex so that 
the painter's algorithm can be used. 

The final number of objects will inevitably increase since lines or faces that cross the 
partitioning plane must be split into two, and it is also desirable that the final tree remains 
reasonably balanced. Therefore the algorithm for correctly and efficiently creating a good 
BSP tree is the most difficult part of an implementation. In 3D space, planes are used to 
partition and split an object's faces; in 2D space lines split an object's segments. 

The following picture illustrates the process of partitioning an irregular polygon into a 
series of convex ones. Notice how each step produces polygons with fewer segments 
until arriving at G and F, which are convex and require no further partitioning. In this 
particular case, the partitioning line was picked between existing vertices of the polygon 
and intersected none of its segments. If the partitioning line intersects a segment, or face 
in a 3D model, the offending segment(s) or face(s) have to be split into two at the 
line/plane because each resulting partition must be a full, independent object. 

 
 
1. A is the root of the tree and the entire polygon 
2. A is split into B and C 
3. B is split into D and E. 
4. D is split into F and G, which are convex and hence become leaves on the tree. 



Since the usefulness of a BSP tree depends upon how well it was generated, a good 
algorithm is essential. Most algorithms will test many possibilities for each partition until 
they find a good compromise. They might also keep backtracking information in 
memory, so that if a branch of the tree is found to be unsatisfactory, other alternative 
partitions may be tried. Thus producing a tree usually requires long computations. 

BSP trees are also used to represent natural images. Construction methods for BSP trees 
representing images were first introduced as efficient representations in which only a few 
hundred nodes can represent an image that normally requires hundreds of thousands of 
pixels. Fast algorithms have also been developed to construct BSP trees of images using 
computer vision and signal processing algorithms. These algorithms, in conjunction with 
advanced entropy coding and signal approximation approaches, were used to develop 
image compression methods. 

Rendering a scene with visibility information from the BSP tree 

BSP trees are used to improve rendering performance in calculating visible triangles for 
the painter's algorithm for instance. The tree can be traversed in linear time from an 
arbitrary viewpoint. 

Since a painter's algorithm works by drawing polygons farthest from the eye first, the 
following code recurses to the bottom of the tree and draws the polygons. As the 
recursion unwinds, polygons closer to the eye are drawn over far polygons. Because the 
BSP tree already splits polygons into trivial pieces, the hardest part of the painter's 
algorithm is already solved - code for back to front tree traversal. 

traverse_tree(bsp_tree* tree, point eye) 
{ 
  location = tree->find_location(eye); 
  
  if(tree->empty()) 
    return; 
  
  if(location > 0)      // if eye in front of location 
  { 
    traverse_tree(tree->back, eye); 
    display(tree->polygon_list); 
    traverse_tree(tree->front, eye); 
  } 
  else if(location < 0) // eye behind location 
  { 
    traverse_tree(tree->front, eye); 
    display(tree->polygon_list); 
    traverse_tree(tree->back, eye); 
  } 
  else                  // eye coincidental with partition hyperplane 
  { 
    traverse_tree(tree->front, eye); 
    traverse_tree(tree->back, eye); 
  } 
} 



Other space partitioning structures 

BSP trees divide a region of space into two subregions at each node. They are related to 
quadtrees and octrees, which divide each region into four or eight subregions, 
respectively. 

Relationship Table 

Name p s 

Binary Space Partition 1 2 

Quadtree 2 4 

Octree 3 8 

where p is the number of dividing planes used, and s is the number of subregions formed. 

BSP trees can be used in spaces with any number of dimensions, but quadtrees and 
octrees are most useful in subdividing 2- and 3-dimensional spaces, respectively. Another 
kind of tree that behaves somewhat like a quadtree or octree, but is useful in any number 
of dimensions, is the kd-tree. 

Timeline 

 1969 Schumacker et al. published a report that described how carefully positioned 
planes in a virtual environment could be used to accelerate polygon ordering. The 
technique made use of depth coherence, which states that a polygon on the far 
side of the plane cannot, in any way, obstruct a closer polygon. This was used in 
flight simulators made by GE as well as Evans and Sutherland. However, creation 
of the polygonal data organization was performed manually by scene designer. 

 1980 Fuchs et al. [FUCH80] extended Schumacker’s idea to the representation of 
3D objects in a virtual environment by using planes that lie coincident with 
polygons to recursively partition the 3D space. This provided a fully automated 
and algorithmic generation of a hierarchical polygonal data structure known as a 
Binary Space Partitioning Tree (BSP Tree). The process took place as an off-line 
preprocessing step that was performed once per environment/object. At run-time, 
the view-dependent visibility ordering was generated by traversing the tree. 

 1981 Naylor's Ph.D thesis containing a full development of both BSP trees and a 
graph-theoretic approach using strongly connected components for pre-computing 
visibility, as well as the connection between the two methods. BSP trees as a 
dimension independent spatial search structure was emphasized, with applications 
to visible surface determination. The thesis also included the first empirical data 
demonstrating that the size of the tree and the number of new polygons was 
reasonable (using a model of the Space Shuttle). 



 1983 Fuchs et al. describe a micro-code implementation of the BSP tree algorithm 
on an Ikonas frame buffer system. This was the first demonstration of real-time 
visible surface determination using BSP trees. 

 1987 Thibault and Naylor described how arbitrary polyhedra may be represented 
using a BSP tree as opposed to the traditional b-rep (boundary representation). 
This provided a solid representation vs. a surface based-representation. Set 
operations on polyhedra were described using a tool, enabling Constructive Solid 
Geometry (CSG) in real-time. This was the fore runner of BSP level design using 
brushes, introduced in the Quake editor and picked up in the Unreal Editor. 

 1990 Naylor, Amanatides, and Thibault provide an algorithm for merging two bsp 
trees to form a new bsp tree from the two original trees. This provides many 
benefits including: combining moving objects represented by BSP trees with a 
static environment (also represented by a BSP tree), very efficient CSG operations 
on polyhedra, exact collisions detection in O(log n * log n), and proper ordering 
of transparent surfaces contained in two interpenetrating objects (has been used 
for an x-ray vision effect). 

 1990 Teller and Séquin proposed the offline generation of potentially visible sets 
to accelerate visible surface determination in orthogonal 2D environments. 

 1991 Gordon and Chen [CHEN91] described an efficient method of performing 
front-to-back rendering from a BSP tree, rather than the traditional back-to-front 
approach. They utilised a special data structure to record, efficiently, parts of the 
screen that have been drawn, and those yet to be rendered. This algorithm, 
together with the description of BSP Trees in the standard computer graphics 
textbook of the day (Foley, Van Dam, Feiner and Hughes) was used by John 
Carmack in the making of Doom. 

 1992 Teller’s PhD thesis described the efficient generation of potentially visible 
sets as a pre-processing step to acceleration real-time visible surface 
determination in arbitrary 3D polygonal environments. This was used in Quake 
and contributed significantly to that game's performance. 

 1993 Naylor answers the question of what characterizes a good BSP tree. He used 
expected case models (rather than worst case analysis) to mathematically measure 
the expected cost of searching a tree and used this measure to build good BSP 
trees. Intuitively, the tree represents an object in a multi-resolution fashion (more 
exactly, as a tree of approximations). Parallels with Huffman codes and 
probabilistic binary search trees are drawn. 

 1993 Hayder Radha's PhD thesis described (natural) image representation 
methods using BSP trees. This includes the development of an optimal BSP-tree 
construction framework for any arbitrary input image. This framework is based on 
a new image transform, known as the Least-Square-Error (LSE) Partitioning Line 



(LPE) transform. H. Radha' thesis also developed an optimal rate-distortion (RD) 
image compression framework and image manipulation approaches using BSP 
trees. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 3 

Bump Mapping 

 

 
 
 
 

 
 
A sphere without bump mapping (left). A bump map to be applied to the sphere (middle). 
The sphere with the bump map applied (right) appears to have a mottled surface 
resembling an orange. Bump maps achieve this effect by changing how an illuminated 
surface reacts to light without actually modifying the size or shape of the surface 

Bump mapping is a technique in computer graphics for simulating bumps and wrinkles 
on the surface of an object. This is achieved by perturbing the surface normals of the 
object and using the perturbed normal during illumination calculations. The result is an 
apparently bumpy surface rather than a perfectly smooth surface although the surface of 
the underlying object is not actually changed. Bump mapping was introduced by Blinn in 
1978. 

Normal and parallax mapping are the most commonly used ways of making bumps, using 
new techniques that makes bump mapping using a greyscale obsolete. 



Bump mapping basics 

 
 
Bump mapping is limited in that it does not actually modify the shape of the underlying 
object. On the left, a mathematical function defining a bump map simulates a crumbling 
surface on a sphere, but the object's outline and shadow remain those of a perfect sphere. 
On the right, the same function is used to modify the surface of a sphere by generating an 
isosurface. This actually models a sphere with a bumpy surface with the result that both 
its outline and its shadow are rendered realistically. 

Bump mapping is a technique in computer graphics to make a rendered surface look more 
realistic by modeling the interaction of a bumpy surface texture with lights in the 
environment. Bump mapping does this by changing the brightness of the pixels on the 
surface in response to a heightmap that is specified for each surface. 

When rendering a 3D scene, the brightness and color of the pixels are determined by the 
interaction of a 3D model with lights in the scene. After it is determined that an object is 
visible, trigonometry is used to calculate the "geometric" surface normal of the object, 
defined as a vector at each pixel position on the object. 

The geometric surface normal then defines how strongly the object interacts with light 
coming from a given direction using Phong shading or a similar lighting algorithm. Light 
traveling perpendicular to a surface interacts more strongly than light that is more parallel 
to the surface. After the initial geometry calculations, a colored texture is often applied to 
the model to make the object appear more realistic. 

After texturing, a calculation is performed for each pixel on the object's surface: 



1. Look up the position on the heightmap that corresponds to the position on the 
surface. 

2. Calculate the surface normal of the heightmap. 
3. Add the surface normal from step two to the geometric surface normal so that the 

normal points in a new direction. 
4. Calculate the interaction of the new "bumpy" surface with lights in the scene 

using, for example, the Phong shading. 

The result is a surface that appears to have real depth. The algorithm also ensures that the 
surface appearance changes as lights in the scene are moved around. Normal mapping is 
the most commonly used bump mapping technique, but there are other alternatives, such 
as parallax mapping. 

A limitation with bump mapping is that it perturbs only the surface normals without 
changing the underlying surface itself. Silhouettes and shadows therefore remain 
unaffected. This limitation can be overcome by techniques including the displacement 
mapping where bumps are actually applied to the surface or using an isosurface. 

For the purposes of rendering in real-time, bump mapping is often referred to as a "pass", 
as in multi-pass rendering, and can be implemented as multiple passes (often three or 
four) to reduce the number of trigonometric calculations that are required. 

Realtime bump mapping techniques 

3D graphics programmers sometimes use a lower quality, faster bump mapping technique 
in order to simulate bump mapping. One such method uses texel index alteration instead 
of altering surface normals. As of GeForce 2 class cards this technique is implemented in 
graphics accelerator hardware. 

Full-screen bump mapping, which could be easily implemented with a very simple and 
fast rendering loop, was a common visual effect when bump-mapping was first 
introduced. 

Emboss bump mapping 

This technique uses texture maps to generate bump mapping effects without requiring a 
custom renderer. This multi-pass algorithm is an extension and refinement of texture 
embossing. This process duplicates the first texture image, shifts it over to the desired 
amount of bump, darkens the texture underneath, cuts out the appropriate shape from the 
texture on top, and blends the two textures into one. This is called two-pass emboss bump 
mapping because it requires two textures. 

It is simple to implement and requires no custom hardware, and is therefore limited by 
the speed of the CPU. However, it only affects diffuse lighting, and the illusion is broken 
depending on the angle of the light. 



Environment mapped bump mapping 

 
 

Matrox G400 Tech Demo with EMBM 

The Matrox G400 chip supports a texture-based surface detailing method called 
Environment Mapped Bump Mapping (EMBM). It was originally developed by 
BitBoys Oy and licensed to Matrox. EMBM was first introduced in DirectX 6.0. 

The Radeon 7200 also includes hardware support for EMBM, which was demonstrated in 
the technical demonstration "Radeon's Ark". However, EMBM was not supported by 
other graphics chips, such as NVIDIA's GeForce 256 through to the GeForce 2, which 
only supported the simpler Dot-3 BM. Due to this lack of industry-wide support, and its 
toll on the limited graphics hardware of the time, EMBM only saw limited use during 
G400's time. Only a few games supported the feature, such as Dungeon Keeper 2 and 
Millennium Soldier: Expendable. 

EMBM initially required specialized hardware within the chip for its calculations, such as 
the Matrox G400 or Radeon 7200. It could also be rendered by the programmable pixel 
shaders of later DirectX 8.0 accelerators like the GeForce 3 and Radeon 8500. 

 



Chapter 4 

Global Illumination & Catmull–Clark 
Subdivision Surface 

 

 

 

Global Illumination 

 
 
Rendering without global illumination. Areas that lie outside of the ceiling lamp's direct 
light lack definition. For example, the lamp's housing appears completely uniform. 
Without the ambient light added into the render, it would appear uniformly black. 



 
 
Rendering with global illumination. Light is reflected by surfaces, and colored light 
transfers from one surface to another. Notice how color from the red wall and green wall 
(not visible) reflects onto other surfaces in the scene. Also notable is the caustic projected 
onto the red wall from light passing through the glass sphere. 

Global illumination is a general name for a group of algorithms used in 3D computer 
graphics that are meant to add more realistic lighting to 3D scenes. Such algorithms take 
into account not only the light which comes directly from a light source (direct 
illumination), but also subsequent cases in which light rays from the same source are 
reflected by other surfaces in the scene, whether reflective or non (indirect illumination). 

Theoretically reflections, refractions, and shadows are all examples of global 
illumination, because when simulating them, one object affects the rendering of another 
object (as opposed to an object being affected only by a direct light). In practice, 
however, only the simulation of diffuse inter-reflection or caustics is called global 
illumination. 

Images rendered using global illumination algorithms often appear more photorealistic 
than images rendered using only direct illumination algorithms. However, such images 
are computationally more expensive and consequently much slower to generate. One 
common approach is to compute the global illumination of a scene and store that 
information with the geometry, i.e., radiosity. That stored data can then be used to 
generate images from different viewpoints for generating walkthroughs of a scene 
without having to go through expensive lighting calculations repeatedly. 



Radiosity, ray tracing, beam tracing, cone tracing, path tracing, Metropolis light 
transport, ambient occlusion, photon mapping, and image based lighting are examples of 
algorithms used in global illumination, some of which may be used together to yield 
results that are not fast, but accurate. 

These algorithms model diffuse inter-reflection which is a very important part of global 
illumination; however most of these (excluding radiosity) also model specular reflection, 
which makes them more accurate algorithms to solve the lighting equation and provide a 
more realistically illuminated scene. 

The algorithms used to calculate the distribution of light energy between surfaces of a 
scene are closely related to heat transfer simulations performed using finite-element 
methods in engineering design. 

In real-time 3D graphics, the diffuse inter-reflection component of global illumination is 
sometimes approximated by an "ambient" term in the lighting equation, which is also 
called "ambient lighting" or "ambient color" in 3D software packages. Though this 
method of approximation (also known as a "cheat" because it's not really a global 
illumination method) is easy to perform computationally, when used alone it does not 
provide an adequately realistic effect. Ambient lighting is known to "flatten" shadows in 
3D scenes, making the overall visual effect more bland. However, used properly, ambient 
lighting can be an efficient way to make up for a lack of processing power. 

Procedure 

For the simulation of global illumination are used in 3D programs, more and more 
specialized algorithms that can effectively simulate the global illumination. These are, for 
example, path tracing or photon mapping, under certain conditions, including radiosity. 
These are always methods to try to solve the rendering equation. 

The following approaches can be distinguished here: 

 Inversion:  
o is not applied in practice 

 Expansion:  
o bi-directional approach: Photon Mapping + Distributed ray tracing, Bi-

directional path tracing, Metropolis light transport 
 Iteration: Lntle + = L(n − 1)  

o Radiosity 

In Light path notation global lighting the paths of the type L (D | S) corresponds * E. 



Image-based lighting 

Another way to simulate real global illumination, is the use of High dynamic range 
images (HDRIs), also known as environment maps, which encircle the scene, and they 
illuminate. This process is known as image-based lighting. 

 

Catmull–Clark Subdivision Surface 

 
 

 
 
First three steps of Catmull–Clark subdivision of a cube with subdivision surface below 



The Catmull–Clark algorithm is used in computer graphics to create smooth surfaces by 
subdivision surface modeling. It was devised by Edwin Catmull and Jim Clark in 1978 as 
a generalization of bi-cubic uniform B-spline surfaces to arbitrary topology. In 2005, 
Edwin Catmull received an Academy Award for Technical Achievement together with 
Tony DeRose and Jos Stam for their invention and application of subdivision surfaces. 

Recursive evaluation 

Catmull–Clark surfaces are defined recursively, using the following refinement scheme: 

Start with a mesh of an arbitrary polyhedron. All the vertices in this mesh shall be called 
original points. 

 For each face, add a face point  
o Set each face point to be the centroid of all original points for the 

respective face. 
 For each edge, add an edge point.  

o Set each edge point to be the average of the two neighbouring face points 
and its two original endpoints. 

 For each face point, add an edge for every edge of the face, connecting the face 
point to each edge point for the face. 

 For each original point P, take the average F of all n face points for faces 
touching P, and take the average R of all n edge midpoints for edges touching P, 
where each edge midpoint is the average of its two endpoint vertices. Move each 
original point to the point 

 

(This is the barycenter of P, R and F with respective weights (n-3), 2 and 1. This 
arbitrary-looking formula was chosen by Catmull and Clark based on the aesthetic 
appearance of the resulting surfaces rather than on a mathematical derivation.) 

The new mesh will consist only of quadrilaterals, which won't in general be planar. The 
new mesh will generally look smoother than the old mesh. 

Repeated subdivision results in smoother meshes. It can be shown that the limit surface 
obtained by this refinement process is at least at extraordinary vertices and 

everywhere else (when n indicates how many derivatives are continuous, we speak of 
continuity). After one iteration, the number of extraordinary points on the surface 

remains constant. 



Exact evaluation 

The limit surface of Catmull–Clark subdivision surfaces can also be evaluated directly, 
without any recursive refinement. This can be accomplished by means of the technique of 
Jos Stam . This method reformulates the recursive refinement process into a matrix 
exponential problem, which can be solved directly by means of matrix diagonalization. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 5 

Level of Detail 

 

 
 
 

In computer graphics, accounting for level of detail involves decreasing the complexity 
of a 3D object representation as it moves away from the viewer or according other 
metrics such as object importance, eye-space speed or position. Level of detail techniques 
increases the efficiency of rendering by decreasing the workload on graphics pipeline 
stages, usually vertex transformations. The reduced visual quality of the model is often 
unnoticed because of the small effect on object appearance when distant or moving fast. 

Although most of the time LOD is applied to geometry detail only, the basic concept can 
be generalized. Recently, LOD techniques included also shader management to keep 
control of pixel complexity. A form of level of detail management has been applied to 
textures for years, under the name of mipmapping, also providing higher rendering 
quality. 

It is commonplace to say that "an object has been LOD'd" when the object is simplified 
by the underlying LODding algorithm. 

Historical reference 

The origin of all the LoD algorithms for 3D computer graphics can be traced back to an 
article by James H. Clark in the October 1976 issue of Communications of the ACM. At 
the time, computers were monolithic and rare, and graphics was being driven by 
researchers. The hardware itself was completely different, both architecturally and 
performance-wise. As such, many differences could be observed with regard to today's 
algorithms but also many common points. 

The original algorithm presented a much more generic approach to what will be 
discussed here. After introducing some available algorithms for geometry management, it 
is stated that most fruitful gains came from "...structuring the environments being 
rendered", allowing to exploit faster transformations and clipping operations. 

The same environment structuring is now proposed as a way to control varying detail 
thus avoiding unnecessary computations, yet delivering adequate visual quality: 



“ For example, a dodecahedron looks like a sphere from a sufficiently 
large distance and thus can be used to model it so long as it is viewed 
from that or a greater distance. However, if it must ever be viewed more 
closely, it will look like a dodecahedron. One solution to this is simply 
to define it with the most detail that will ever be necessary. However, 
then it might have far more detail than is needed to represent it at large 
distances, and in a complex environment with many such objects, there 
would be too many polygons (or other geometric primitives) for the 
visible surface algorithms to efficiently handle. ”

The proposed algorithm envisions a tree data structure which encodes in its arcs both 
transformations and transitions to more detailed objects. In this way, each node encodes 
an object and according to a fast heuristic, the tree is descended to the leafs which 
provide each object with more detail. When a leaf is reached, other methods could be 
used when higher detail is needed, such as Catmull's recursive subdivision. 

“ The significant point, however, is that in a complex environment, the 
amount of information presented about the various objects in the 
environment varies according to the fraction of the field of view 
occupied by those objects. ”

The paper then introduces clipping (not to be confused with culling (computer graphics), 
although often similar), various considerations on the graphical working set and its 
impact on performance, interactions between the proposed algorithm and others to 
improve rendering speed. Interested readers are encouraged in checking the references for 
further details on the topic. 

Well known approaches 

Although the algorithm introduced above covers a whole range of level of detail 
management techniques, real world applications usually employ different methods 
according the information being rendered. Because of the appearance of the considered 
objects, two main algorithm families are used. 

The first is based on subdividing the space in a finite amount of regions, each with a 
certain level of detail. The result is discrete amount of detail levels, from which the name 
Discrete LoD (DLOD). There's no way to support a smooth transition between LOD 
levels at this level, although alpha blending or morphing can be used to avoid visual 
popping. 

The latter considers the polygon mesh being rendered as a function which must be 
evaluated requiring to avoid excessive errors which are a function of some heuristic 
(usually distance) themselves. The given "mesh" function is then continuously evaluated 



and an optimized version is produced according to a tradeoff between visual quality and 
performance. Those kind of algorithms are usually referred as Continuous LOD (CLOD). 

Details on Discrete LOD 

 
 
An example of various DLOD ranges. Darker areas are meant to be rendered with higher 
detail. An additional culling operation is run, discarding all the information outside the 
frustum (colored areas). 

The basic concept of discrete LOD (DLOD) is to provide various models to represent the 
same object. Obtaining those models requires an external algorithm which is often non-
trivial and subject of many polygon reduction techniques. Successive LODding 
algorithms will simply assume those models are available. 

DLOD algorithms are often used in performance-intensive applications with small data 
sets which can easily fit in memory. Although out of core algorithms could be used, the 
information granularity is not well suited to this kind of application. This kind of 



algorithm is usually easier to get working, providing both faster performance and lower 
CPU usage because of the few operations involved. 

DLOD methods are often used for "stand-alone" moving objects, possibly including 
complex animation methods. A different approach is used for geomipmapping , a popular 
terrain rendering algorithm because this applies to terrain meshes which are both 
graphically and topologically different from "object" meshes. Instead of computing an 
error and simplify the mesh according to this, geomipmapping takes a fixed reduction 
method, evaluates the error introduced and computes a distance at which the error is 
acceptable. Although straightforward, the algorithm provides decent performance. 

A discrete LOD example 

As a simple example, consider the following sphere. A discrete LOD approach would 
cache a certain number of models to be used at different distances. Because the model 
can trivially be procedurally generated by its mathematical formulation, using a different 
amount of sample points distributed on the surface is sufficient to generate the various 
models required. This pass is not a LODding algorithm. 

Visual impact comparisons and measurements 

Image 

  

Vertices ~5500 ~2880 ~1580 ~670 140 

Notes 
Maximum 
detail, 
for closeups. 

   

Minimum 
detail, 
very far 
objects. 

To simulate a realistic transform bound scenario, we'll use an ad-hoc written application. 
We'll make sure we're not CPU bound by using simple algorithms and minimum 
fragment operations. Each frame, the program will compute each sphere's distance and 
choose a model from a pool according to this information. To easily show the concept, 
the distance at which each model is used is hard coded in the source. A more involved 
method would compute adequate models according to the usage distance chosen. 

We use OpenGL for rendering because its high efficiency in managing small batches, 
storing each model in a display list thus avoiding communication overheads. Additional 
vertex load is given by applying two directional light sources ideally located infinitely far 
away. 



The following table compares the performance of LoD aware rendering and a full detail 
(brute force) method. 

Visual impact comparisons and measurements 

 Brute DLOD 

Rendered 
images 

Render time 27.27 ms 1.29 ms 

Scene vertices 
(thousands) 

2328.48 109.44 

Hierarchical LOD 

Because hardware is geared towards large amounts of detail, rendering low polygon 
objects may score sub-optimal performances. HLOD avoids the problem by grouping 
different objects together. This allows for higher efficiency as well as taking advantage of 
proximity considerations. 

 
 
 
 
 
 
 



Chapter 6 

Non-Uniform Rational B-Spline 

 

 

 
 
 

 
 
Three-dimensional NURBS surfaces can have complex, organic shapes. Control points 
influence the directions the surface takes. The outermost square below delineates the X/Y 
extents of the surface. 

 
 

A NURBS curve. 



Non-uniform rational basis spline (NURBS) is a mathematical model commonly used 
in computer graphics for generating and representing curves and surfaces which offers 
great flexibility and precision for handling both analytic and freeform shapes. 

History 

Development of NURBS began in the 1950s by engineers who were in need of a 
mathematically precise representation of freeform surfaces like those used for ship hulls, 
aerospace exterior surfaces, and car bodies, which could be exactly reproduced whenever 
technically needed. Prior representations of this kind of surface only existed as a single 
physical model created by a designer. 

The pioneers of this development were Pierre Bézier who worked as an engineer at 
Renault, and Paul de Casteljau who worked at Citroën, both in France. Bézier worked 
nearly parallel to de Casteljau, neither knowing about the work of the other. But because 
Bézier published the results of his work, the average computer graphics user today 
recognizes splines — which are represented with control points lying off the curve itself 
— as Bézier splines, while de Casteljau’s name is only known and used for the 
algorithms he developed to evaluate parametric surfaces. In the 1960s it became clear that 
non-uniform, rational B-splines are a generalization of Bézier splines, which can be 
regarded as uniform, non-rational B-splines. 

At first NURBS were only used in the proprietary CAD packages of car companies. Later 
they became part of standard computer graphics packages. 

Real-time, interactive rendering of NURBS curves and surfaces was first made available 
on Silicon Graphics workstations in 1989. In 1993, the first interactive NURBS modeller 
for PCs, called NöRBS, was developed by CAS Berlin, a small startup company 
cooperating with the Technical University of Berlin. Today most professional computer 
graphics applications available for desktop use offer NURBS technology, which is most 
often realized by integrating a NURBS engine from a specialized company. 



Use 

 

NURBS are commonly used in computer-aided design (CAD), manufacturing (CAM), 
and engineering (CAE) and are part of numerous industry wide used standards, such as 
IGES, STEP, ACIS, and PHIGS. NURBS tools are also found in various 3D modeling 
and animation software packages, such as form•Z, Blender, Maya, Rhino3D, Cinema 4D, 
Cobalt, Shark FX, and Solid Modeling Solutions. Other than this there are specialized 
NURBS modeling software packages such as Autodesk Alias Surface, solidThinking and 
ICEM Surf. 

They allow representation of geometrical shapes in a compact form. They can be 
efficiently handled by the computer programs and yet allow for easy human interaction. 
NURBS surfaces are functions of two parameters mapping to a surface in three-
dimensional space. The shape of the surface is determined by control points. 

In general, editing NURBS curves and surfaces is highly intuitive and predictable. 
Control points are always either connected directly to the curve/surface, or act as if they 
were connected by a rubber band. Depending on the type of user interface, editing can be 
realized via an element’s control points, which are most obvious and common for Bézier 
curves, or via higher level tools such as spline modeling or hierarchical editing. 

A surface under construction, e.g. the hull of a motor yacht, is usually composed of 
several NURBS surfaces known as patches. These patches should be fitted together in 
such a way that the boundaries are invisible. This is mathematically expressed by the 
concept of geometric continuity. 



Higher-level tools exist which benefit from the ability of NURBS to create and establish 
geometric continuity of different levels: 

Positional continuity (G0) 
holds whenever the end positions of two curves or surfaces are coincidental. The 
curves or surfaces may still meet at an angle, giving rise to a sharp corner or edge 
and causing broken highlights. 

Tangential continuity (G1) 
requires the end vectors of the curves or surfaces to be parallel, ruling out sharp 
edges. Because highlights falling on a tangentially continuous edge are always 
continuous and thus look natural, this level of continuity can often be sufficient. 

Curvature continuity (G2) 
further requires the end vectors to be of the same length and rate of length change. 
Highlights falling on a curvature-continuous edge do not display any change, 
causing the two surfaces to appear as one. This can be visually recognized as 
“perfectly smooth”. This level of continuity is very useful in the creation of 
models that require many bi-cubic patches composing one continuous surface. 

Geometric continuity mainly refers to the shape of the resulting surface; since NURBS 
surfaces are functions, it is also possible to discuss the derivatives of the surface with 
respect to the parameters. This is known as parametric continuity. Parametric continuity 
of a given degree implies geometric continuity of that degree. 

First- and second-level parametric continuity (C0 and C1) are for practical purposes 
identical to positional and tangential (G0 and G1) continuity. Third-level parametric 
continuity (C2), however, differs from curvature continuity in that its parameterization is 
also continuous. In practice, C2 continuity is easier to achieve if uniform B-splines are 
used. 

The definition of the continuity 'Cn' requires that the nth derivative of the curve/surface 
(dnC(u) / dun) are equal at a joint. Note that the (partial) derivatives of curves and 
surfaces are vectors that have a direction and a magnitude. Both should be equal. 

Highlights and reflections can reveal the perfect smoothing, which is otherwise 
practically impossible to achieve without NURBS surfaces that have at least G2 
continuity. This same principle is used as one of the surface evaluation methods whereby 
a ray-traced or reflection-mapped image of a surface with white stripes reflecting on it 
will show even the smallest deviations on a surface or set of surfaces. This method is 
derived from car prototyping wherein surface quality is inspected by checking the quality 
of reflections of a neon-light ceiling on the car surface. This method is also known as 
"Zebra analysis". 

Technical specifications 

A NURBS curve is defined by its order, a set of weighted control points, and a knot 
vector. NURBS curves and surfaces are generalizations of both B-splines and Bézier 



curves and surfaces, the primary difference being the weighting of the control points 
which makes NURBS curves rational (non-rational B-splines are a special case of 
rational B-splines). Whereas Bézier curves evolve into only one parametric direction, 
usually called s or u, NURBS surfaces evolve into two parametric directions, called s and 
t or u and v. 

 

By evaluating a NURBS curve at various values of the parameter, the curve can be 
represented in cartesian two- or three-dimensional space. Likewise, by evaluating a 
NURBS surface at various values of the two parameters, the surface can be represented in 
cartesian space. 

NURBS curves and surfaces are useful for a number of reasons: 

 They are invariant under affine as well as perspective transformations: operations 
like rotations and translations can be applied to NURBS curves and surfaces by 
applying them to their control points. 

 They offer one common mathematical form for both standard analytical shapes 
(e.g., conics) and free-form shapes. 

 They provide the flexibility to design a large variety of shapes. 
 They reduce the memory consumption when storing shapes (compared to simpler 

methods). 
 They can be evaluated reasonably quickly by numerically stable and accurate 

algorithms. 

In the next sections, NURBS is discussed in one dimension (curves). It should be noted 
that all of it can be generalized to two or even more dimensions. 

Control points 

The control points determine the shape of the curve. Typically, each point of the curve is 
computed by taking a weighted sum of a number of control points. The weight of each 



point varies according to the governing parameter. For a curve of degree d, the weight of 
any control point is only nonzero in d+1 intervals of the parameter space. Within those 
intervals, the weight changes according to a polynomial function (basis functions) of 
degree d. At the boundaries of the intervals, the basis functions go smoothly to zero, the 
smoothness being determined by the degree of the polynomial. 

As an example, the basis function of degree one is a triangle function. It rises from zero 
to one, then falls to zero again. While it rises, the basis function of the previous control 
point falls. In that way, the curve interpolates between the two points, and the resulting 
curve is a polygon, which is continuous, but not differentiable at the interval boundaries, 
or knots. Higher degree polynomials have correspondingly more continuous derivatives. 
Note that within the interval the polynomial nature of the basis functions and the linearity 
of the construction make the curve perfectly smooth, so it is only at the knots that 
discontinuity can arise. 

The fact that a single control point only influences those intervals where it is active is a 
highly desirable property, known as local support. In modelling, it allows the changing 
of one part of a surface while keeping other parts equal. 

Adding more control points allows better approximation to a given curve, although only a 
certain class of curves can be represented exactly with a finite number of control points. 
NURBS curves also feature a scalar weight for each control point. This allows for more 
control over the shape of the curve without unduly raising the number of control points. 
In particular, it adds conic sections like circles and ellipses to the set of curves that can be 
represented exactly. The term rational in NURBS refers to these weights. 

The control points can have any dimensionality. One-dimensional points just define a 
scalar function of the parameter. These are typically used in image processing programs 
to tune the brightness and color curves. Three-dimensional control points are used 
abundantly in 3D modelling, where they are used in the everyday meaning of the word 
'point', a location in 3D space. Multi-dimensional points might be used to control sets of 
time-driven values, e.g. the different positional and rotational settings of a robot arm. 
NURBS surfaces are just an application of this. Each control 'point' is actually a full 
vector of control points, defining a curve. These curves share their degree and the number 
of control points, and span one dimension of the parameter space. By interpolating these 
control vectors over the other dimension of the parameter space, a continuous set of 
curves is obtained, defining the surface. 

The knot vector 

The knot vector is a sequence of parameter values that determines where and how the 
control points affect the NURBS curve. The number of knots is always equal to the 
number of control points plus curve degree plus one. The knot vector divides the 
parametric space in the intervals mentioned before, usually referred to as knot spans. 
Each time the parameter value enters a new knot span, a new control point becomes 



active, while an old control point is discarded. It follows that the values in the knot vector 
should be in nondecreasing order, so (0, 0, 1, 2, 3, 3) is valid while (0, 0, 2, 1, 3, 3) is not. 

Consecutive knots can have the same value. This then defines a knot span of zero length, 
which implies that two control points are activated at the same time (and of course two 
control points become deactivated). This has impact on continuity of the resulting curve 
or its higher derivatives; for instance, it allows to create corners in an otherwise smooth 
NURBS curve. A number of coinciding knots is sometimes referred to as a knot with a 
certain multiplicity. Knots with multiplicity two or three are known as double or triple 
knots. The multiplicity of a knot is limited to the degree of the curve; since a higher 
multiplicity would split the curve into disjoint parts and it would leave control points 
unused. For first-degree NURBS, each knot is paired with a control point. 

The knot vector usually starts with a knot that has multiplicity equal to the order. This 
makes sense, since this activates the control points that have influence on the first knot 
span. Similarly, the knot vector usually ends with a knot of that multiplicity. Curves with 
such knot vectors start and end in a control point. 

The individual knot values are not meaningful by themselves; only the ratios of the 
difference between the knot values matter. Hence, the knot vectors (0, 0, 1, 2, 3, 3) and 
(0, 0, 2, 4, 6, 6) produce the same curve. The positions of the knot values influences the 
mapping of parameter space to curve space. Rendering a NURBS curve is usually done 
by stepping with a fixed stride through the parameter range. By changing the knot span 
lengths, more sample points can be used in regions where the curvature is high. Another 
use is in situations where the parameter value has some physical significance, for instance 
if the parameter is time and the curve describes the motion of a robot arm. The knot span 
lengths then translate into velocity and acceleration, which are essential to get right to 
prevent damage to the robot arm or its environment. This flexibility in the mapping is 
what the phrase non uniform in NURBS refers to. 

Necessary only for internal calculations, knots are usually not helpful to the users of 
modeling software. Therefore, many modeling applications do not make the knots 
editable or even visible. It's usually possible to establish reasonable knot vectors by 
looking at the variation in the control points. More recent versions of NURBS software 
(e.g., Autodesk Maya and Rhinoceros 3D) allow for interactive editing of knot positions, 
but this is significantly less intuitive than the editing of control points. 

Order 

The order of a NURBS curve defines the number of nearby control points that influence 
any given point on the curve. The curve is represented mathematically by a polynomial of 
degree one less than the order of the curve. Hence, second-order curves (which are 
represented by linear polynomials) are called linear curves, third-order curves are called 
quadratic curves, and fourth-order curves are called cubic curves. The number of control 
points must be greater than or equal to the order of the curve. 



In practice, cubic curves are the ones most commonly used. Fifth- and sixth-order curves 
are sometimes useful, especially for obtaining continuous higher order derivatives, but 
curves of higher orders are practically never used because they lead to internal numerical 
problems and tend to require disproportionately large calculation times. 

Construction of the basis functions  

The basis functions used in NURBS curves are usually denoted as Ni,n(u), in which i 
corresponds to the i-th control point, and n corresponds with the degree of the basis 
function. The parameter dependence is frequently left out, so we can write Ni,n. The 
definition of these basis functions is recursive in n. The degree-0 functions Ni,0 are 
piecewise constant functions. They are one on the corresponding knot span and zero 
everywhere else. Effectively, Ni,n is a linear interpolation of Ni,n − 1 and Ni + 1,n − 1. The 
latter two functions are non-zero for n knot spans, overlapping for n − 1 knot spans. The 
function Ni,n is computed as 

 
 
From bottom to top: Linear basis functions N1,1 (blue) and N2,1 (green), their weight 
functions f and g and the resulting quadratic basis function. The knots are 0, 1, 2 and 2.5 

Ni,n = fi,nNi,n − 1 + gi + 1,nNi + 1,n − 1 

fi rises linearly from zero to one on the interval where Ni,n − 1 is non-zero, while gi + 1 falls 
from one to zero on the interval where Ni + 1,n − 1 is non-zero. As mentioned before, Ni,1 is 
a triangular function, nonzero over two knot spans rising from zero to one on the first, 
and falling to zero on the second knot span. Higher order basis functions are non-zero 
over corresponding more knot spans and have correspondingly higher degree. If u is the 
parameter, and ki is the i-th knot, we can write the functions f and g as 

 

and 



 

The functions f and g are positive when the corresponding lower order basis functions are 
non-zero. By induction on n it follows that the basis functions are non-negative for all 
values of n and u. This makes the computation of the basis functions numerically stable. 

Again by induction, it can be proved that the sum of the basis functions for a particular 
value of the parameter is unity. This is known as the partition of unity property of the 
basis functions. 

 
Linear basis functions 

 
Quadratic basis functions 

The figures show the linear and the quadratic basis functions for the knots {..., 0, 1, 2, 3, 
4, 4.1, 5.1, 6.1, 7.1, ...} 

One knot span is considerably shorter than the others. On that knot span, the peak in the 
quadratic basis function is more distinct, reaching almost one. Conversely, the adjoining 
basis functions fall to zero more quickly. In the geometrical interpretation, this means 
that the curve approaches the corresponding control point closely. In case of a double 
knot, the length of the knot span becomes zero and the peak reaches one exactly. The 
basis function is no longer differentiable at that point. The curve will have a sharp corner 
if the neighbour control points are not collinear. 

General form of a NURBS curve 

Using the definitions of the basis functions Ni,n from the previous paragraph, a NURBS 
curve takes the following form : 

 

In this, k is the number of control points and wi are the corresponding weights. The 
denominator is a normalizing factor that evaluates to one if all weights are one. This can 



be seen from the partition of unity property of the basis functions. It is customary to write 
this as 

 

in which the functions 

 

are known as the rational basis functions. 

Manipulating NURBS objects 

A number of transformations can be applied to a NURBS object. For instance, if some 
curve is defined using a certain degree and N control points, the same curve can be 
expressed using the same degree and N+1 control points. In the process a number of 
control points change position and a knot is inserted in the knot vector. These 
manipulations are used extensively during interactive design. When adding a control 
point, the shape of the curve should stay the same, forming the starting point for further 
adjustments. A number of these operations are discussed below. 

Knot insertion 

As the term suggests, knot insertion inserts a knot into the knot vector. If the degree of 
the curve is n, then n − 1 control points are replaced by n new ones. The shape of the 
curve stays the same. 

A knot can be inserted multiple times, up to the maximum multiplicity of the knot. This is 
sometimes referred to as knot refinement and can be achieved by an algorithm that is 
more efficient than repeated knot insertion. 

Knot removal 

Knot removal is the reverse of knot insertion. Its purpose is to remove knots and the 
associated control points in order to get a more compact representation. Obviously, this is 
not always possible while retaining the exact shape of the curve. In practice, a tolerance 
in the accuracy is used to determine whether a knot can be removed. The process is used 
to clean up after an interactive session in which control points may have been added 
manually, or after importing a curve from a different representation, where a 
straightforward conversion process leads to redundant control points. 



Degree elevation 

A NURBS curve of a particular degree can always be represented by a NURBS curve of 
higher degree. This is frequently used when combining separate NURBS curves, e.g. 
when creating a NURBS surface interpolating between a set of NURBS curves or when 
unifying adjacent curves. In the process, the different curves should be brought to the 
same degree, usually the maximum degree of the set of curves. The process is known as 
degree elevation. 

Curvature 

The most important property in differential geometry is the curvature κ. It describes the 
local properties (edges, corners, etc.) and relations between the first and second 
derivative, and thus, the precise curve shape. Having determined the derivatives it is easy 

to compute or approximated as the arclength from the second 
derivate κ = | r''(so) | . The direct computation of the curvature κ with these equations is 
the big advantage of parameterized curves against their polygonal representations. 

Example: a circle 

Non-rational splines or Bézier curves may approximate a circle, but they cannot represent 
it exactly. Rational splines can represent any conic section, including the circle, exactly. 
This representation is not unique, but one possibility appears below: 

x y z weight 

1 0 0 1 

 0 

0 1 0 1 

−  0 

−1 0 0 1 

−  −  0 

0 −1 0 1 

 −  0 

1 0 0 1 

The order is three, since a circle is a quadratic curve and the spline's order is one more 
than the degree of its piecewise polynomial segments. The knot vector is 

. The circle is composed of 
four quarter circles, tied together with double knots. Although double knots in a third 
order NURBS curve would normally result in loss of continuity in the first derivative, the 



control points are positioned in such a way that the first derivative is continuous. (In fact, 
the curve is infinitely differentiable everywhere, as it must be if it exactly represents a 
circle.) 

The curve represents a circle exactly, but it is not exactly parametrized in the circle's arc 
length. This means, for example, that the point at t does not lie at (sin(t),cos(t)) (except 
for the start, middle and end point of each quarter circle, since the representation is 
symmetrical). This is obvious; the x coordinate of the circle would otherwise provide an 
exact rational polynomial expression for cos(t), which is impossible. The circle does 
make one full revolution as its parameter t goes from 0 to 2π, but this is only because the 
knot vector was arbitrarily chosen as multiples of π / 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 7 

Normal Mapping & Mipmap 

 

 

 

Normal Mapping 

 
 

Normal mapping used to re-detail simplified meshes. 

In 3D computer graphics, normal mapping, or "Dot3 bump mapping", is a technique 
used for faking the lighting of bumps and dents. It is used to add details without using 
more polygons. A normal map is usually an RGB image that corresponds to the X, Y, and 
Z coordinates of a surface normal from a more detailed version of the object. A common 
use of this technique is to greatly enhance the appearance and details of a low polygon 
model by generating a normal map from a high polygon model. 



History 

The idea of taking geometric details from a high polygon model was introduced in 
"Fitting Smooth Surfaces to Dense Polygon Meshes" by Krishnamurthy and Levoy, Proc. 
SIGGRAPH 1996, where this approach was used for creating displacement maps over 
nurbs. In 1998, two papers were presented with key ideas for transferring details with 
normal maps from high to low polygon meshes: "Appearance Preserving Simplification", 
by Cohen et al. SIGGRAPH 1998, and "A general method for preserving attribute values 
on simplified meshes" by Cignoni et al. IEEE Visualization '98. The former introduced 
the idea of storing surface normals directly in a texture, rather than displacements, though 
it required the low-detail model to be generated by a particular constrained simplification 
algorithm. The latter presented a simpler approach that decouples the high and low 
polygonal mesh and allows the recreation of any attributes of the high-detail model 
(color, texture coordinates, displacements, etc.) in a way that is not dependent on how the 
low-detail model was created. The combination of storing normals in a texture, with the 
more general creation process is still used by most currently available tools. 

How it works 

To calculate the Lambertian (diffuse) lighting of a surface, the unit vector from the 
shading point to the light source is dotted with the unit vector normal to that surface, and 
the result is the intensity of the light on that surface. Imagine a polygonal model of a 
sphere - you can only approximate the shape of the surface. By using a 3-channel bitmap 
textured across the model, more detailed normal vector information can be encoded. Each 
channel in the bitmap corresponds to a spatial dimension (X, Y and Z). These spatial 
dimensions are relative to a constant coordinate system for object-space normal maps, or 
to a smoothly varying coordinate system (based on the derivatives of position with 
respect to texture coordinates) in the case of tangent-space normal maps. This adds much 
more detail to the surface of a model, especially in conjunction with advanced lighting 
techniques. 

Calculating Tangent Space 

In order to find the perturbation in the normal the tangent space must be correctly 
calculated. Most often the normal is perturbed in a fragment shader after applying the 
model and view matrices. Typically the geometry provides a normal and tangent. The 
tangent is part of the tangent plane and can be transformed simply with the linear part of 
the matrix (the upper 3x3). However, the normal needs to be transformed by the inverse 
transpose. Most applications will want bitangent to match the transformed geometry (and 
associated uv's). So instead of enforcing the bitanget to be normal to the tangent, it is 
generally preferable to transform the bitangent just like the tangent. Let t be tangent, n be 
normal, b be bitangent, M3x3 be linear part of model matrix, and V3x3 be the linear part of 
the view matrix. 

 

 



 

Normal mapping in video games 

Interactive normal map rendering was originally only possible on PixelFlow, a parallel 
rendering machine built at the University of North Carolina at Chapel Hill. It was later 
possible to perform normal mapping on high-end SGI workstations using multi-pass 
rendering and framebuffer operations or on low end PC hardware with some tricks using 
paletted textures. However, with the advent of shaders in personal computers and game 
consoles, normal mapping became widely used in proprietary commercial video games 
starting in late 2003, and followed by open source games in later years. Normal 
mapping's popularity for real-time rendering is due to its good quality to processing 
requirements ratio versus other methods of producing similar effects. Much of this 
efficiency is made possible by distance-indexed detail scaling, a technique which 
selectively decreases the detail of the normal map of a given texture (cf. mipmapping), 
meaning that more distant surfaces require less complex lighting simulation. 

Basic normal mapping can be implemented in any hardware that supports palettized 
textures. The first game console to have specialized normal mapping hardware was the 
Sega Dreamcast. However, Microsoft's Xbox was the first console to widely use the 
effect in retail games. Out of the sixth generation consoles, only the PlayStation 2's GPU 
lacks built-in normal mapping support. Games for the Xbox 360 and the PlayStation 3 
rely heavily on normal mapping and are beginning to implement parallax mapping. The 
Nintendo 3DS has been shown to support normal mapping, as demonstrated by Resident 
Evil: Revelations and Metal Gear Solid: Snake Eater. 

 

Mipmap 

In 3D computer graphics texture filtering, MIP maps (also mipmaps) are pre-calculated, 
optimized collections of images that accompany a main texture, intended to increase 
rendering speed and reduce aliasing artifacts. They are widely used in 3D computer 
games, flight simulators and other 3D imaging systems. The technique is known as 
mipmapping. The letters "MIP" in the name are an acronym of the Latin phrase multum 
in parvo, meaning "much in a small space". Mipmaps need more space in memory. They 
also form the basis of wavelet compression. 

Origin 

Mipmapping was invented by Lance Williams in 1983 and is described in his paper 
Pyramidal parametrics. From the abstract: "This paper advances a 'pyramidal parametric' 
prefiltering and sampling geometry which minimizes aliasing effects and assures 



continuity within and between target images." The "pyramid" can be imagined as the set 
of mipmaps stacked on top of each other. 

How it works 

 
 
An example of mipmap image storage: the principal image on the left is accompanied by 
filtered copies of reduced size. 

Each bitmap image of the mipmap set is a version of the main texture, but at a certain 
reduced level of detail. Although the main texture would still be used when the view is 
sufficient to render it in full detail, the renderer will switch to a suitable mipmap image 
(or in fact, interpolate between the two nearest, if trilinear filtering is activated) when the 
texture is viewed from a distance or at a small size. Rendering speed increases since the 
number of texture pixels ("texels") being processed can be much lower than with simple 
textures. Artifacts are reduced since the mipmap images are effectively already anti-
aliased, taking some of the burden off the real-time renderer. Scaling down and up is 
made more efficient with mipmaps as well. 

If the texture has a basic size of 256 by 256 pixels, then the associated mipmap set may 
contain a series of 8 images, each one-fourth the total area of the previous one: 128×128 
pixels, 64×64, 32×32, 16×16, 8×8, 4×4, 2×2, 1×1 (a single pixel). If, for example, a scene 
is rendering this texture in a space of 40×40 pixels, then either a scaled up version of the 
32×32 (without trilinear interpolation) or an interpolation of the 64×64 and the 32×32 
mipmaps (with trilinear interpolation) would be used. The simplest way to generate these 
textures is by successive averaging; however, more sophisticated algorithms (perhaps 
based on signal processing and Fourier transforms) can also be used. 

The increase in storage space required for all of these mipmaps is a third of the original 
texture, because the sum of the areas 1/4 + 1/16 + 1/64 + 1/256 + · · · converges to 1/3. In 
the case of an RGB image with three channels stored as separate planes, the total mipmap 
can be visualized as fitting neatly into a square area twice as large as the dimensions of 
the original image on each side (four times the original area - one square for each 



channel, then increase subtotal that by a third). This is the inspiration for the tag "multum 
in parvo". 

In many instances, the filtering should not be uniform in each direction (it should be 
anisotropic, as opposed to isotropic), and a compromise resolution is used. If a higher 
resolution is used, the cache coherence goes down, and the aliasing is increased in one 
direction, but the image tends to be clearer. If a lower resolution is used, the cache 
coherence is improved, but the image is overly blurry, to the point where it becomes 
difficult to identify. 

To help with this problem, nonuniform mipmaps (also known as rip-maps) are sometimes 
used. With a 16×16 base texture map, the rip-map resolutions would be 16×8, 16×4, 
16×2, 16×1, 8×16, 8×8, 8×4, 8×2, 8×1, 4×16, 4×8, 4×4, 4×2, 4×1, 2×16, 2×8, 2×4, 2×2, 
2×1, 1×16, 1×8, 1×4, 1×2 and 1×1. 

A trade off : anisotropic mip-mapping 

The unfortunate problem with this approach is that rip-maps require four times as much 
memory as the base texture map, and so rip-maps have been very unpopular. Also for 
1×4 and more extreme 4 maps each rotated by 45° would be needed and the real memory 
requirement is growing more than linearly. 

To reduce the memory requirement, and simultaneously give more resolutions to work 
with, summed-area tables were conceived. However, this approach tends to exhibit poor 
cache behavior. Also, a summed area table needs to have wider types to store the partial 
sums than the word size used to store the texture. For these reasons, there isn't any 
hardware that implements summed-area tables today. 

A compromise has been reached today, called anisotropic mip-mapping. In the case 
where an anisotropic filter is needed, a higher resolution mipmap is used, and several 
texels are averaged in one direction to get more filtering in that direction. This has a 
somewhat detrimental effect on the cache, but greatly improves image quality. 
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Particle System & Painter's Algorithm 

 

 

 

Particle System 

 
 

A particle system used to simulate a fire, created in 3dengfx. 



 
 

Ad-hoc particle system used to simulate a galaxy, created in 3dengfx. 
 

 
 

A particle system used to simulate a bomb explosion, created in particleIllusion. 



The term particle system refers to a computer graphics technique to simulate certain 
fuzzy phenomena, which are otherwise very hard to reproduce with conventional 
rendering techniques. Examples of such phenomena which are commonly replicated 
using particle systems include fire, explosions, smoke, moving water, sparks, falling 
leaves, clouds, fog, snow, dust, meteor tails, hair, fur, grass, or abstract visual effects like 
glowing trails, magic spells, etc. 

While in most cases particle systems are implemented in three dimensional graphics 
systems, two dimensional particle systems may also be used under some circumstances. 

Typical implementation 

Typically a particle system's position and motion in 3D space are controlled by what is 
referred to as an emitter. The emitter acts as the source of the particles, and its location 
in 3D space determines where they are generated and whence they proceed. A regular 3D 
mesh object, such as a cube or a plane, can be used as an emitter. The emitter has 
attached to it a set of particle behavior parameters. These parameters can include the 
spawning rate (how many particles are generated per unit of time), the particles' initial 
velocity vector (the direction they are emitted upon creation), particle lifetime (the length 
of time each individual particle exists before disappearing), particle color, and many 
more. It is common for all or most of these parameters to be "fuzzy" — instead of a 
precise numeric value, the artist specifies a central value and the degree of randomness 
allowable on either side of the center (i.e. the average particle's lifetime might be 50 
frames ±20%). When using a mesh object as an emitter, the initial velocity vector is often 
set to be normal to the individual face(s) of the object, making the particles appear to 
"spray" directly from each face. 

A typical particle system's update loop (which is performed for each frame of animation) 
can be separated into two distinct stages, the parameter update/simulation stage and the 
rendering stage. 

Simulation stage 

During the simulation stage, the number of new particles that must be created is 
calculated based on spawning rates and the interval between updates, and each of them is 
spawned in a specific position in 3D space based on the emitter's position and the 
spawning area specified. Each of the particle's parameters (i.e. velocity, color, etc.) is 
initialized according to the emitter's parameters. At each update, all existing particles are 
checked to see if they have exceeded their lifetime, in which case they are removed from 
the simulation. Otherwise, the particles' position and other characteristics are advanced 
based on some sort of physical simulation, which can be as simple as translating their 
current position, or as complicated as performing physically-accurate trajectory 
calculations which take into account external forces (gravity, friction, wind, etc.). It is 
common to perform some sort of collision detection between particles and specified 3D 
objects in the scene to make the particles bounce off of or otherwise interact with 



obstacles in the environment. Collisions between particles are rarely used, as they are 
computationally expensive and not really useful for most simulations. 

Rendering stage 

After the update is complete, each particle is rendered, usually in the form of a textured 
billboarded quad (i.e. a quadrilateral that is always facing the viewer). However, this is 
not necessary; a particle may be rendered as a single pixel in small resolution/limited 
processing power environments. Particles can be rendered as Metaballs in off-line 
rendering; isosurfaces computed from particle-metaballs make quite convincing liquids. 
Finally, 3D mesh objects can "stand in" for the particles — a snowstorm might consist of 
a single 3D snowflake mesh being duplicated and rotated to match the positions of 
thousands or millions of particles. 

Snowflakes versus hair 

Particle systems can be either animated or static; that is, the lifetime of each particle can 
either be distributed over time or rendered all at once. The consequence of this distinction 
is the difference between the appearance of "snow" and the appearance of "hair." 

The term "particle system" itself often brings to mind only the animated aspect, which is 
commonly used to create moving particulate simulations — sparks, rain, fire, etc. In these 
implementations, each frame of the animation contains each particle at a specific position 
in its life cycle, and each particle occupies a single point position in space. 

However, if the entire life cycle of the each particle is rendered simultaneously, the result 
is static particles — strands of material that show the particles' overall trajectory, rather 
than point particles. These strands can be used to simulate hair, fur, grass, and similar 
materials. The strands can be controlled with the same velocity vectors, force fields, 
spawning rates, and deflection parameters that animated particles obey. In addition, the 
rendered thickness of the strands can be controlled and in some implementations may be 
varied along the length of the strand. Different combinations of parameters can impart 
stiffness, limpness, heaviness, bristliness, or any number of other properties. The strands 
may also use texture mapping to vary the strands' color, length, or other properties across 
the emitter surface. 



 
 
 
A cube emitting 5000 animated particles, obeying a "gravitational" force in the negative 
Y direction. 

 
 

 
The same cube emitter rendered using static particles, or strands. 

Artist-friendly particle system tools 

Particle systems can be created and modified natively in many 3D modeling and 
rendering packages including Lightwave, Houdini, Maya, XSI, 3D Studio Max and 
Blender. These editing programs allow artists to have instant feedback on how a particle 
system will look with properties and constraints that they specify. There is also plug-in 
software available that provides enhanced particle effects; examples include AfterBurn 
and RealFlow (for liquids). Compositing software such as Combustion or specialized, 



particle-only software such as Particle Studio and particleIllusion can be used for the 
creation of particle systems for film and video. 

Developer-friendly particle system tools 

Particle systems code that can be included in game engines, digital content creation 
systems, and effects applications can be written from scratch or downloaded. One free 
implementation is The Particle Systems API. Another for the XNA framework is the 
Dynamic Particle System Framework. Havok provides multiple particle system APIs. 
Their Havok FX API focuses especially on particle system effects. Ageia provides a 
particle system and other game physics API that is used in many games, including Unreal 
Engine 3 games. In February 2008, Ageia was bought by Nvidia. 

Painter's Algorithm 

The painter's algorithm, also known as a priority fill, is one of the simplest solutions to 
the visibility problem in 3D computer graphics. When projecting a 3D scene onto a 2D 
plane, it is necessary at some point to decide which polygons are visible, and which are 
hidden. 

The name "painter's algorithm" refers to the technique employed by many painters of 
painting distant parts of a scene before parts which are nearer thereby covering some 
areas of distant parts. The painter's algorithm sorts all the polygons in a scene by their 
depth and then paints them in this order, farthest to closest. It will paint over the parts that 
are normally not visible — thus solving the visibility problem — at the cost of having 
painted redundant areas of distant objects. 

 
 

The distant mountains are painted first, followed by the closer meadows; finally, the 
closest objects in this scene, the trees, are painted. 



 
Overlapping polygons can cause the algorithm to fail 

The algorithm can fail in some cases, including cyclic overlap or piercing polygons. In 
the case of cyclic overlap, as shown in the figure to the right, Polygons A, B, and C 
overlap each other in such a way that it is impossible to determine which polygon is 
above the others. In this case, the offending polygons must be cut to allow sorting. 
Newell's algorithm, proposed in 1972, provides a method for cutting such polygons. 
Numerous methods have also been proposed in the field of computational geometry. 

The case of piercing polygons arises when one polygon intersects another. As with cyclic 
overlap, this problem may be resolved by cutting the offending polygons. 

In basic implementations, the painter's algorithm can be inefficient. It forces the system 
to render each point on every polygon in the visible set, even if that polygon is occluded 
in the finished scene. This means that, for detailed scenes, the painter's algorithm can 
overly tax the computer hardware. 

A reverse painter's algorithm is sometimes used, in which objects nearest to the viewer 
are painted first — with the rule that paint must never be applied to parts of the image 
that are already painted. In a computer graphic system, this can be very efficient, since it 
is not necessary to calculate the colors (using lighting, texturing and such) for parts of the 
more distant scene that are hidden by nearby objects. However, the reverse algorithm 
suffers from many of the same problems as the standard version. 

These and other flaws with the algorithm led to the development of Z-buffer techniques, 
which can be viewed as a development of the painter's algorithm, by resolving depth 
conflicts on a pixel-by-pixel basis, reducing the need for a depth-based rendering order. 
Even in such systems, a variant of the painter's algorithm is sometimes employed. As Z-
buffer implementations generally rely on fixed-precision depth-buffer registers 
implemented in hardware, there is scope for visibility problems due to rounding error. 



These are overlaps or gaps at joins between polygons. To avoid this, some graphics 
engine implementations "overrender", drawing the affected edges of both polygons in the 
order given by painter's algorithm. This means that some pixels are actually drawn twice 
(as in the full painters algorithm) but this happens on only small parts of the image and 
has a negligible performance effect. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 9  

Phong Shading 

 

 
 
 

Phong shading refers to a set of techniques in 3D computer graphics. Phong shading 
includes a model for the reflection of light from surfaces and a compatible method of 
estimating pixel colors by interpolating surface normals across rasterized polygons. 

The model of reflection may also be referred to as the Phong reflection model, Phong 
illumination or Phong lighting. It may be called Phong shading in the context of pixel 
shaders or other places where a lighting calculation can be referred to as "shading". The 
interpolation method may also be called Phong interpolation, which is usually referred 
to by "per-pixel lighting". Typically it is called "shading" when contrasted with other 
interpolation methods such as Gouraud shading or flat shading. The Phong reflection 
model may be used in conjunction with any of these interpolation methods. 

History 

These methods were developed by Bui Tuong Phong at the University of Utah, who 
published them in his 1973 Ph.D. dissertation. Phong's shading methods were considered 
radical at the time of their introduction, but have evolved into a baseline shading method 
for many rendering applications. Phong's methods have proven popular due to their 
generally parsimonious use of CPU time per rendered pixel. 

Phong reflection model 

Phong reflection is an empirical model of local illumination. It describes the way a 
surface reflects light as a combination of the diffuse reflection of rough surfaces with the 
specular reflection of shiny surfaces. It is based on Bui Tuong Phong's informal 
observation that shiny surfaces have small intense specular highlights, while dull surfaces 
have large highlights that fall off more gradually. The reflection model also includes an 
ambient term to account for the small amount of light that is scattered about the entire 
scene. 



 
 
Visual illustration of the Phong equation: here the light is white, the ambient and diffuse 
colors are both blue, and the specular color is white, reflecting a small part of the light 
hitting the surface, but only in very narrow highlights. The intensity of the diffuse 
component varies with the direction of the surface, and the ambient component is 
uniform (independent of direction). 

For each light source in the scene, we define the components is and id as the intensities 
(often as RGB values) of the specular and diffuse components of the light sources 
respectively. A single term ia controls the ambient lighting; it is sometimes computed as a 
sum of contributions from all light sources. 

For each material in the scene, we define: 

ks: specular reflection constant, the ratio of reflection of the specular term of 
incoming light 
kd: diffuse reflection constant, the ratio of reflection of the diffuse term of 
incoming light (Lambertian reflectance) 
ka: ambient reflection constant, the ratio of reflection of the ambient term present 
in all points in the scene rendered 
α: is a shininess constant for this material, which is larger for surfaces that are 
smoother and more mirror-like. When this constant is large the specular highlight 
is small. 

We further define lights as the set of all light sources, L as the direction vector from the 
point on the surface toward each light source, N as the normal at this point on the surface, 
R as the direction that a perfectly reflected ray of light would take from this point on the 
surface, and V as the direction pointing towards the viewer (such as a virtual camera). 

Then the Phong reflection model provides an equation for computing the shading value 
of each surface point Ip: 

 

where the direction vector Rm is calculated as the reflection of − Lm (the direction from 
the light source to the surface) on the surface using a Householder transformation: 



 

The diffuse term is not affected by the viewer direction (V). The specular term is large 
only when the viewer direction (V) is aligned with the reflection direction R. Their 
alignment is measured by the α power of the cosine of the angle between them. The 
cosine of the angle between the normalized vectors R and V is equal to their dot product. 
When α is large, in the case of a nearly mirror-like reflection, the specular highlight will 
be small, because any viewpoint not aligned with the reflection will have a cosine less 
than one which rapidly approaches zero when raised to a high power. 

When we have color representations as RGB values, this equation will typically be 
calculated separately for R, G and B intensities. 

Although the above formulation is the common way of presenting the Phong model, each 
term should only be included if the term's dot product is positive. 

Computational approximations 

When implementing the Phong reflection model in graphics software, there are a number 
of methods for approximating the model, rather than implementing the exact formulas, 
which can speed up the calculation. 

If α is large, the calculation of the power term may be computationally expensive since it 
requires a large number of multiplications; it can be approximated by realizing that 

 

for a sufficiently large integer γ (typically 4 will be enough), where 

which can be approximated as , and 

is a real number (not necessarily an integer). This method substitutes a few 
multiplications for a variable exponentiation, and if using the difference vector 

instead of the dot product doesn't require as accurate a normalization of the 
interpolated normal vector in computing the reflection vector. 

Inverse Phong reflection model 

The Phong shading reflection model is an approximation of shading of objects in real life. 
This means that the Phong equation can relate the shading seen in a photograph with the 
surface normals of the visible object. Inverse refers to the wish to estimate the surface 
normals given a rendered image, natural or computer-made. 

The Phong reflection model contains many parameters, such as the surface diffuse 
reflection parameter (albedo) which may vary within the object. Thus the normals of an 



object in a photograph can only be determined, by introducing additive information such 
as the number of lights, light directions and reflection parameters. 

For example we have a cylindrical object for instance a finger and like to calculate the 
normal N = [Nx,Nz] on a line on the object. We assume only one light, no specular 
reflection, and uniform known (approximated) reflection parameters. We can then 
simplify the Phong equation to: 

 

With Ca a constant equal to the ambient light and Cd a constant equal to the diffusion 
reflection. We can re-write the equation to: 

 

Which can be rewritten for a line through the cylindrical object as: 

(Ip − Ca) / Cd = LxNx + LzNz 

For instance if the light direction is 45 degrees above the object L = [0.71,0.71] we get 
two equations with two unknowns. 

(Ip − Ca) / Cd = 0.71Nx + 0.71Nz 

 

Because of the powers of two in the equation there are two possible solutions for the 
normal direction. Thus some prior information of the geometry is needed to define the 
correct normal direction. The normals are directly related to angles of inclination of the 
line on the object surface. Thus the normals allow the calculation of the relative surface 
heights of the line on the object using a line integral, if we assume a continuous surface. 

If the object is not cylindrical, we have three unknown normal values N = [Nx,Ny,Nz]. 
Then the two equations still allow the normal to rotate around the view vector, thus 
additional constraints are needed from prior geometric information. For instance in face 
recognition those geometric constraints can be obtained using principal component 
analysis (PCA) on a database of depth-maps of faces, allowing only surface normals 
solutions which are found in a normal population. 



Phong interpolation 

 
 

Phong shading interpolation example 

Phong shading improves upon Gouraud shading and provides a better approximation of 
the shading of a smooth surface. Phong shading assumes a smoothly varying surface 
normal vector. The Phong interpolation method works better than Gouraud shading when 
applied to a reflection model that has small specular highlights such as the Phong 
reflection model. 

The most serious problem with Gouraud shading occurs when specular highlights are 
found in the middle of a large polygon. Since these specular highlights are absent from 
the polygon's vertices and Gouraud shading interpolates based on the vertex colors, the 
specular highlight will be missing from the polygon's interior. This problem is fixed by 
Phong shading. 

Unlike Gouraud shading, which interpolates colors across polygons, in Phong shading a 
normal vector is linearly interpolated across the surface of the polygon from the 
polygon's vertex normals. The surface normal is interpolated and normalized at each 
pixel and then used in the Phong reflection model to obtain the final pixel color. Phong 
shading is more computationally expensive than Gouraud shading since the reflection 
model must be computed at each pixel instead of at each vertex. 

In some modern hardware, variants of this algorithm are implemented using pixel or 
fragment shaders. This can be accomplished by coding normal vectors as secondary 
colors for each polygon, have the rasterizer use Gouraud shading to interpolate them and 
interpret them appropriately in the pixel or fragment shader to calculate the light for each 
pixel based on this normal information. 
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Path Tracing 

 

 
 
 

 
 

A simple scene showing the soft phenomena simulated with path tracing. 

Path tracing is a computer graphics rendering technique that attempts to simulate the 
physical behaviour of light as closely as possible. It is a generalisation of conventional 
ray tracing, tracing rays from the virtual camera through several bounces on or through 
objects. The image quality provided by path tracing is usually superior to that of images 



produced using conventional rendering methods at the cost of much greater computation 
requirements. 

Path tracing naturally simulates many effects that have to be specifically added to other 
methods (ray tracing or scanline rendering), such as soft shadows, depth of field, motion 
blur, caustics, ambient occlusion, and indirect lighting. Implementation of a renderer 
including these effects is correspondingly simpler. 

Due to its accuracy and unbiased nature, path tracing is used to generate reference images 
when testing the quality of other rendering algorithms. In order to get high quality images 
from path tracing, a large number of rays must be traced to avoid visible artifacts in the 
form of noise. 

History 

The rendering equation and its use in computer graphics was presented by James Kajiya 
in 1986. This presentation contained what was probably the first description of the path 
tracing algorithm. A decade later, Lafortune suggested many refinements, including 
bidirectional path tracing. 

Metropolis light transport, a method of perturbing previously found paths in order to 
increase performance for difficult scenes, was introduced in 1997 by Eric Veach and 
Leonidas J. Guibas. 

More recently, computers and GPUs have become powerful enough to render images 
more quickly, causing more widespread interest in path tracing algorithms. Tim Purcell 
first presented a global illumination algorithm running on a GPU in 2002. In 2009, 
Vladimir Koylazov demonstrated the first commercial implementation of a path tracer 
running on a GPU, and other implementations have followed. This was aided by the 
maturing of GPGPU programming toolkits such as CUDA and OpenCL. 

Description 

In the real world, many small amounts of light are emitted from light sources, and travel 
in straight lines (rays) from object to object, changing colour and intensity, until they are 
absorbed (possibly by an eye or camera). This process is simulated by path tracing, 
except that the paths are traced backwards, from the camera to the light. The inefficiency 
arises in the random nature of the bounces from many surfaces, as it is usually quite 
unlikely that a path will intersect a light. As a result, most traced paths do not contribute 
to the final image. 

This behaviour is described mathematically by the rendering equation, which is the 
equation that path tracing algorithms try to solve. 

Path tracing is not simply ray tracing with infinite recursion depth. In conventional ray 
tracing, lights are sampled directly when a diffuse surface is hit by a ray. In path tracing, 



a new ray is randomly generated within the hemisphere of the object and then traced until 
it hits a light — possibly never. This type of path can hit many diffuse surfaces before 
interacting with a light. 

A simple path tracing pseudocode might look something like this: 

 Color TracePath(Ray r,depth) { 
   if(depth == MaxDepth) 
     return Black;  // bounced enough times 
  
   r.FindNearestObject(); 
   if(r.hitSomething == false) 
     return Black;  // nothing was hit 
  
   Material m = r.thingHit->material; 
   Color emittance = m.emittance; 
  
   // pick a random direction from here and keep going 
   Ray newRay; 
   newRay.origin = r.pointWhereObjWasHit; 
   newRay.direction = 
RandomUnitVectorInHemisphereOf(r.normalWhereObjWasHit); 
   float cos_omega = DotProduct(newRay.direction, 
r.normalWhereObjWasHit); 
    
   Color BDRF = m.reflectance*cos_omega; 
   Color reflected = TracePath(newRay,depth+1); 
  
   return emittance + ( BDRF * cos_omega * reflected ); 
 } 
 

In the above example if every surface of a closed space emitted and reflected (0.5,0.5,0.5) 
then every pixel in the image would be white. 

Bidirectional path tracing 

In order to accelerate the convergence of images, bidirectional algorithms trace paths in 
both directions. In the forward direction, rays are traced from light sources until they are 
too faint to be seen or strike the camera. In the reverse direction (the usual one), rays are 
traced from the camera until they strike a light or too many bounces ("depth") have 
occurred. This approach normally results in an image that converges much more quickly 
than using only one direction. 

Veach and Guibas give a more accurate description: 

These methods generate one subpath starting at a light source and another starting at the 
lens, then they consider all the paths obtained by joining every prefix of one subpath to 
every suffix of the other. This leads to a family of different importance sampling 
techniques for paths, which are then combined to minimize variance. 



Performance 

A path tracer continuously samples pixels of an image. The image starts to become 
recognisable after only a few samples per pixel, perhaps 100. However, for the image to 
"converge" and reduce noise to acceptable levels usually takes around 5000 samples for 
most images, and many more for pathological cases. This can take hours or days 
depending on scene complexity and hardware and software performance. Newer GPU 
implementations are promising from 1-10 million samples per second on modern 
hardware, producing acceptably noise-free images in seconds or minutes. Noise is 
particularly a problem for animations, giving them a normally-unwanted "film-grain" 
quality of random speckling. 

Metropolis light transport obtains more important samples first, by slightly modifying 
previously-traced successful paths. This can result in a lower-noise image with fewer 
samples. 

Renderer performance is quite difficult to measure fairly. One approach is to measure 
"Samples per second", or the number of paths that can be traced and added to the image 
each second. This varies considerably between scenes and also depends on the "path 
depth", or how many times a ray is allowed to bounce before it is abandoned. It also 
depends heavily on the hardware used. Finally, one renderer may generate many low 
quality samples, while another may converge faster using fewer high-quality samples. 



Scattering distribution functions 

 
 

Scattering distribution functions 

The reflective properties (amount, direction and colour) of surfaces are modelled using 
BRDFs. The equivalent for transmitted light (light that goes through the object) are 
BTDFs. A path tracer can take full advantage of complex, carefully modelled or 
measured distribution functions, which controls the appearance ("material", "texture" or 
"shading" in computer graphics terms) of an object. 

 

 



Chapter 11 

Photon Mapping 

 

 
 
 

In computer graphics, photon mapping is a two-pass global illumination algorithm 
developed by Henrik Wann Jensen that solves the rendering equation. Rays from the light 
source and rays from the camera are traced independently until some termination 
criterion is met, then they are connected in a second step to produce a radiance value. It is 
used to realistically simulate the interaction of light with different objects. Specifically, it 
is capable of simulating the refraction of light through a transparent substance such as 
glass or water, diffuse interreflection between illuminated objects, the subsurface 
scattering of light in translucent materials, and some of the effects caused by particulate 
matter such as smoke or water vapor. It can also be extended to more accurate 
simulations of light such as spectral rendering. 

Unlike path tracing, bidirectional path tracing and Metropolis light transport, photon 
mapping is a "biased" rendering algorithm, which means that averaging many renders 
using this method does not converge to a correct solution to the rendering equation. 
However, since it is a consistent method, a correct solution can be achieved by increasing 
the number of photons. 



Effects 

Caustics 

 
 

A model of a wine glass ray traced with photon mapping to show caustics. 

Light refracted or reflected causes patterns called caustics, usually visible as concentrated 
patches of light on nearby surfaces. For example, as light rays pass through a wine glass 
sitting on a table, they are refracted and patterns of light are visible on the table. Photon 
mapping can trace the paths of individual photons to model where these concentrated 
patches of light will appear. 

Diffuse interreflection 

Diffuse interreflection is apparent when light from one diffuse object is reflected onto 
another. Photon mapping is particularly adept at handling this effect because the 
algorithm reflects photons from one surface to another based on that surface's 
bidirectional reflectance distribution function (BRDF), and thus light from one object 
striking another is a natural result of the method. Diffuse interreflection was first modeled 
using radiosity solutions. Photon mapping differs though in that it separates the light 
transport from the nature of the geometry in the scene. Color bleed is an example of 
diffuse interreflection. 



Subsurface scattering 

Subsurface scattering is the effect evident when light enters a material and is scattered 
before being absorbed or reflected in a different direction. Subsurface scattering can 
accurately be modeled using photon mapping. This was the original way Jensen 
implemented it; however, the method becomes slow for highly scattering materials, and 
bidirectional surface scattering reflectance distribution functions (BSSRDFs) are more 
efficient in these situations. 

Usage 

Construction of the photon map (1st pass) 

With photon mapping, light packets called photons are sent out into the scene from the 
light sources. Whenever a photon intersects with a surface, the intersection point and 
incoming direction are stored in a cache called the photon map. Typically, two photon 
maps are created for a scene: one especially for caustics and a global one for other light. 
After intersecting the surface, a probability for either reflecting, absorbing, or 
transmitting/refracting is given by the material. A Monte Carlo method called Russian 
roulette is used to choose one of these actions. If the photon is absorbed, no new direction 
is given, and tracing for that photon ends. If the photon reflects, the surface's BRDF is 
used to determine a new direction. Finally, if the photon is transmitting, a different 
function for its direction is given depending upon the nature of the transmission. 

Once the photon map is constructed (or during construction), it is typically arranged in a 
manner that is optimal for the k-nearest neighbor algorithm, as photon look-up time 
depends on the spatial distribution of the photons. Jensen advocates the usage of kd-trees. 
The photon map is then stored on disk or in memory for later usage. 

Rendering (2nd pass) 

In this step of the algorithm, the photon map created in the first pass is used to estimate 
the radiance of every pixel of the output image. For each pixel, the scene is ray traced 
until the closest surface of intersection is found. 

At this point, the rendering equation is used to calculate the surface radiance leaving the 
point of intersection in the direction of the ray that struck it. To facilitate efficiency, the 
equation is decomposed into four separate factors: direct illumination, specular reflection, 
caustics, and soft indirect illumination. 

For an accurate estimate of direct illumination, a ray is traced from the point of 
intersection to each light source. As long as a ray does not intersect another object, the 
light source is used to calculate the direct illumination. For an approximate estimate of 
indirect illumination, the photon map is used to calculate the radiance contribution. 



Specular reflection can be, in most cases, calculated using ray tracing procedures (as it 
handles reflections well). 

The contribution to the surface radiance from caustics is calculated using the caustics 
photon map directly. The number of photons in this map must be sufficiently large, as the 
map is the only source for caustics information in the scene. 

For soft indirect illumination, radiance is calculated using the photon map directly. This 
contribution, however, does not need to be as accurate as the caustics contribution and 
thus uses the global photon map. 

Calculating radiance using the photon map 

In order to calculate surface radiance at an intersection point, one of the cached photon 
maps is used. The steps are: 

1. Gather the N nearest photons using the nearest neighbor search function on the 
photon map. 

2. Let S be the sphere that contains these N photons. 
3. For each photon, divide the amount of flux (real photons) that the photon 

represents by the area of S and multiply by the BRDF applied to that photon. 
4. The sum of those results for each photon represents total surface radiance returned 

by the surface intersection in the direction of the ray that struck it. 

Optimizations 

 To avoid emitting unneeded photons, the initial direction of the outgoing photons 
is often constrained. Instead of simply sending out photons in random directions, 
they are sent in the direction of a known object that is a desired photon 
manipulator to either focus or diffuse the light. There are many other refinements 
that can be made to the algorithm: for example, choosing the number of photons 
to send, and where and in what pattern to send them. It would seem that emitting 
more photons in a specific direction would cause a higher density of photons to be 
stored in the photon map around the position where the photons hit, and thus 
measuring this density would give an inaccurate value for irradiance. This is true; 
however, the algorithm used to compute radiance does not depend on irradiance 
estimates. 

 For soft indirect illumination, if the surface is Lambertian, then a technique 
known as irradiance caching may be used to interpolate values from previous 
calculations. 

 To avoid unnecessary collision testing in direct illumination, shadow photons can 
be used. During the photon mapping process, when a photon strikes a surface, in 
addition to the usual operations performed, a shadow photon is emitted in the 
same direction the original photon came from that goes all the way through the 



object. The next object it collides with causes a shadow photon to be stored in the 
photon map. Then during the direct illumination calculation, instead of sending 
out a ray from the surface to the light that tests collisions with objects, the photon 
map is queried for shadow photons. If none are present, then the object has a clear 
line of sight to the light source and additional calculations can be avoided. 

 To optimize image quality, particularly of caustics, Jensen recommends use of a 
cone filter. Essentially, the filter gives weight to photons' contributions to 
radiance depending on how far they are from ray-surface intersections. This can 
produce sharper images. 

 Image space photon mapping achieves real-time performance by computing the 
first and last scattering using a GPU rasterizer. 

Variations 

 Although photon mapping was designed to work primarily with ray tracers, it can 
also be extended for use with scanline renderers. 
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3D projection is any method of mapping three-dimensional points to a two-dimensional 
plane. As most current methods for displaying graphical data are based on planar two-
dimensional media, the use of this type of projection is widespread, especially in 
computer graphics, engineering and drafting. 

Orthographic projection 

When the human eye looks at a scene, objects in the distance appear smaller than objects 
close by. Orthographic projection ignores this effect to allow the creation of to-scale 
drawings for construction and engineering. 

Orthographic projections are a small set of transforms often used to show profile, detail 
or precise measurements of a three dimensional object. Common names for orthographic 
projections include plane, cross-section, bird's-eye, and elevation. 

If the normal of the viewing plane (the camera direction) is parallel to one of the 3D axes, 
the mathematical transformation is as follows; To project the 3D point ax, ay, az onto the 
2D point bx, by using an orthographic projection parallel to the y axis (profile view), the 
following equations can be used: 

bx = sxax + cx 
by = szaz + cz 

where the vector s is an arbitrary scale factor, and c is an arbitrary offset. These constants 
are optional, and can be used to properly align the viewport. Using matrix multiplication, 
the equations become: 

. 



While orthographically projected images represent the three dimensional nature of the 
object projected, they do not represent the object as it would be recorded 
photographically or perceived by a viewer observing it directly. In particular, parallel 
lengths at all points in an orthographically projected image are of the same scale 
regardless of whether they are far away or near to the virtual viewer. As a result, lengths 
near to the viewer are not foreshortened as they would be in a perspective projection. 

Perspective projection 

When the human eye looks at a scene, objects in the distance appear smaller than objects 
close by - this is known as perspective. While orthographic projection ignores this effect 
to allow accurate measurements, perspective definition shows distant objects as smaller 
to provide additional realism. 

The perspective projection requires greater definition. A conceptual aid to understanding 
the mechanics of this projection involves treating the 2D projection as being viewed 
through a camera viewfinder. The camera's position, orientation, and field of view control 
the behavior of the projection transformation. The following variables are defined to 
describe this transformation: 

 - the 3D position of a point A that is to be projected. 
 - the 3D position of a point C representing the camera. 

 - The orientation of the camera (represented, for instance, by Tait–Bryan 
angles). 

 - the viewer's position relative to the display surface. 

Which results in: 

 - the 2D projection of . 

When and the 3D vector is projected 

to the 2D vector . 

Otherwise, to compute we first define a vector as the position of point A with 
respect to a coordinate system defined by the camera, with origin in C and rotated by 

with respect to the initial coordinate system. This is achieved by subtracting from 
and then applying a rotation by to the result. This transformation is often called a 

camera transform, and can be expressed as follows, expressing the rotation in terms of 
rotations about the x, y, and z axes (these calculations assume that the axes are ordered as 
a left-handed system of axes):   

 



This representation corresponds to rotating by three Euler angles (more properly, Tait–
Bryan angles), using the xyz convention, which can be interpreted either as "rotate about 
the extrinsic axes (axes of the scene) in the order z, y, x (reading right-to-left)" or "rotate 
about the intrinsic axes (axes of the camera) in the order x, y, z) (reading left-to-right)". 

Note that if the camera is not rotated ( ), then the matrices drop out (as 
identities), and this reduces to simply a shift:  

Alternatively, without using matrices, (note that the signs of angles are inconsistent with 
matrix form): 

 

This transformed point can then be projected onto the 2D plane using the formula (here, 
x/y is used as the projection plane, literature also may use x/z): 

 

Or, in matrix form using homogeneous coordinates, the system 

 

in conjunction with an argument using similar triangles, leads to division by the 
homogeneous coordinate, giving 

 

The distance of the viewer from the display surface, , directly relates to the field of 

view, where is the viewed angle. (Note: This assumes that you 
map the points (-1,-1) and (1,1) to the corners of your viewing surface) 

The above equations can also be rewritten as: 

 



In which is the display size, is the recording surface size (CCD or film), is the 
distance from the recording surface to the aperture, and is the distance from the point 
to the aperture. 

Subsequent clipping and scaling operations may be necessary to map the 2D plane onto 
any particular display media. 

Diagram 

 

To determine which screen x-coordinate corresponds to a point at Ax,Az multiply the 
point coordinates by: 

 

the same works for the screen y-coordinate: 

 

(where Ax and Ay are coordinates occupied by the object before the perspective 
transform) 
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Screenshot of scene rendered with RRV (simple implementation of radiosity renderer 
based on OpenGL) 79th iteration. 

Radiosity is a global illumination algorithm used in 3D computer graphics rendering. 
Radiosity is an application of the finite element method to solving the rendering equation 
for scenes with purely diffuse surfaces. Unlike Monte Carlo algorithms (such as path 
tracing) which handle all types of light paths, typical radiosity methods only account for 
paths which leave a light source and are reflected diffusely some number of times 
(possibly zero) before hitting the eye. Such paths are represented as "LD*E". Radiosity 
calculations are viewpoint independent which increases the computations involved, but 
makes them useful for all viewpoints. 

Radiosity methods were first developed in about 1950 in the engineering field of heat 
transfer. They were later refined specifically for application to the problem of rendering 
computer graphics in 1984 by researchers at Cornell University. 



Notable commercial radiosity engines are Lightscape (now incorporated into the 
Autodesk 3D Studio Max internal render engine), form•Z RenderZone Plus by 
AutoDesSys, Inc.), and ElAS (Electric Image Animation System). 

Visual characteristics 

 
 

Difference between standard direct illumination and radiosity 

The inclusion of radiosity calculations in the rendering process often lends an added 
element of realism to the finished scene, because of the way it mimics real-world 
phenomena. Consider a simple room scene. 

The image on the left was rendered with a typical direct illumination renderer. There 
are three types of lighting in this scene which have been specifically chosen and placed 
by the artist in an attempt to create realistic lighting: spot lighting with shadows (placed 
outside the window to create the light shining on the floor), ambient lighting (without 
which any part of the room not lit directly by a light source would be totally dark), and 
omnidirectional lighting without shadows (to reduce the flatness of the ambient 
lighting). 

The image on the right was rendered using a radiosity algorithm. There is only one 
source of light: an image of the sky placed outside the window. The difference is 
marked. The room glows with light. Soft shadows are visible on the floor, and subtle 
lighting effects are noticeable around the room. Furthermore, the red color from the 
carpet has bled onto the grey walls, giving them a slightly warm appearance. None of 
these effects were specifically chosen or designed by the artist. 

Overview of the radiosity algorithm 

The surfaces of the scene to be rendered are each divided up into one or more smaller 
surfaces (patches). A view factor is computed for each pair of patches. View factors (also 
known as form factors) are coefficients describing how well the patches can see each 
other. Patches that are far away from each other, or oriented at oblique angles relative to 



one another, will have smaller view factors. If other patches are in the way, the view 
factor will be reduced or zero, depending on whether the occlusion is partial or total. 

The view factors are used as coefficients in a linearized form of the rendering equation, 
which yields a linear system of equations. Solving this system yields the radiosity, or 
brightness, of each patch, taking into account diffuse interreflections and soft shadows. 

Progressive radiosity solves the system iteratively in such a way that after each iteration 
we have intermediate radiosity values for the patch. These intermediate values 
correspond to bounce levels. That is, after one iteration, we know how the scene looks 
after one light bounce, after two passes, two bounces, and so forth. Progressive radiosity 
is useful for getting an interactive preview of the scene. Also, the user can stop the 
iterations once the image looks good enough, rather than wait for the computation to 
numerically converge. 

 
 
As the algorithm iterates, light can be seen to flow into the scene, as multiple bounces are 
computed. Individual patches are visible as squares on the walls and floor. 

Another common method for solving the radiosity equation is "shooting radiosity," which 
iteratively solves the radiosity equation by "shooting" light from the patch with the most 
error at each step. After the first pass, only those patches which are in direct line of sight 
of a light-emitting patch will be illuminated. After the second pass, more patches will 
become illuminated as the light begins to bounce around the scene. The scene continues 
to grow brighter and eventually reaches a steady state. 

Mathematical formulation 

The basic radiosity method has its basis in the theory of thermal radiation, since radiosity 
relies on computing the amount of light energy transferred among surfaces. In order to 
simplify computations, the method assumes that all scattering is perfectly diffuse. 
Surfaces are typically discretized into quadrilateral or triangular elements over which a 
piecewise polynomial function is defined. 

After this breakdown, the amount of light energy transfer can be computed by using the 
known reflectivity of the reflecting patch, combined with the view factor of the two 
patches. This dimensionless quantity is computed from the geometric orientation of two 



patches, and can be thought of as the fraction of the total possible emitting area of the 
first patch which is covered by the second patch. 

More correctly, radiosity is the energy leaving the patch surface per discrete time interval 
and is the combination of emitted and reflected energy: 

 

where: 

 Bi is the radiosity of patch i. 
 Ei is emitted energy. 
 Ri is the reflectivity of the patch, giving reflected energy by multiplying by the 

incident energy (the energy which arrives from other patches). 

 All j ( ) in the rendered environment are integrated for BjFji dAj, to 
determine the energy leaving each patch j that arrives at patch i. 

 Fij is the constant-valued view factor for the radiation leaving i and hitting patch j. 

The reciprocity: 

 

gives: 

 

For ease of use the integral is replaced and uniform radiosity is assumed over the patch, 
creating the simpler: 

 

This equation can then be applied to each patch. The equation is monochromatic, so color 
radiosity rendering requires calculation for each of the required colors. 

The view factor Fji can be calculated in a number of ways. Early methods used a 
hemicube (an imaginary cube centered upon the first surface to which the second surface 
was projected, devised by Cohen and Greenberg in 1985) to approximate the form factor, 
which also solved the intervening patch problem. This is quite computationally 
expensive, because ideally form factors must be derived for every possible pair of 
patches, leading to a quadratic increase in computation with added geometry. New 
methods include adaptive integration 



Reducing computation time 

Although in its basic form radiosity is assumed to have a quadratic increase in 
computation time with added geometry (surfaces and patches), this need not be the case. 
The radiosity problem can be rephrased as a problem of rendering a texture mapped 
scene. In this case, the computation time increases only linearly with the number of 
patches (ignoring complex issues like cache use). Using a binary space partitioning tree 
can massively reduce the amount of time spent determining which patches are completely 
hidden from others in complex scenes. 

Following the commercial enthusiasm for radiosity-enhanced imagery, but prior to the 
standardization of rapid radiosity calculation, many architects and graphic artists used a 
technique referred to loosely as false radiosity. By darkening areas of texture maps 
corresponding to corners, joints and recesses, and applying them via self-illumination or 
diffuse mapping, a radiosity-like effect of patch interaction could be created with a 
standard scanline renderer (cf. ambient occlusion). 

Since radiosity can now be computed more effectively using texture mapping algorithms, 
it lends itself to acceleration using standard graphics acceleration hardware, widely 
available for all types of computers. 

Advantages 

 
 
A modern render of the iconic Utah teapot. Radiosity was used for all diffuse 
illumination in this scene. 



One of the advantages of the Radiosity algorithm is that it is relatively simple to explain 
and implement. This makes it a useful algorithm for teaching students about global 
illumination algorithms. A typical direct illumination renderer already contains nearly all 
of the algorithms (perspective transformations, texture mapping, hidden surface removal) 
required to implement radiosity. A strong grasp of mathematics is not required to 
understand or implement this algorithm. 

Limitations 

Typical radiosity methods only account for light paths of the form LD*E, i.e., paths 
which start at a light source and make multiple diffuse bounces before reaching the eye. 
Although there are several approaches to integrating other illumination effects such as 
specular and glossy  reflections, radiosity-based methods are generally not used to solve 
the complete rendering equation. 

Basic radiosity also has trouble resolving sudden changes in visibility (e.g., hard-edged 
shadows) because coarse, regular discretization into piecewise constant elements 
corresponds to a low-pass box filter of the spatial domain. Discontinuity meshing  uses 
knowledge of visibility events to generate a more intelligent discretization. 

Confusion about terminology 

Radiosity was perhaps the first rendering algorithm in widespread use which accounted 
for diffuse indirect lighting. Earlier rendering algorithms, such as Whitted-style ray 
tracing were capable of computing effects such as reflections, refractions, and shadows, 
but despite being highly global phenomena, these effects were not commonly referred to 
as "global illumination." As a consequence, the term "global illumination" became 
confused with "diffuse interreflection," and "Radiosity" became confused with "global 
illumination" in popular parlance. However, the three are distinct concepts. 

The radiosity method in the current computer graphics context derives from (and is 
fundamentally the same as) the radiosity method in heat transfer. In this context radiosity 
is the total radiative flux (both reflected and re-radiated) leaving a surface, also 
sometimes known as radiant exitance. Calculation of Radiosity rather than surface 
temperatures is a key aspect of the radiosity method that permits linear matrix methods to 
be applied to the problem. 
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Reflection Mapping 

 
 

An example of reflection mapping. 

In computer graphics, environment mapping, or reflection mapping, is an efficient 
Image-based lighting technique for approximating the appearance of a reflective surface 
by means of a precomputed texture image. The texture is used to store the image of the 
distant environment surrounding the rendered object. 

Several ways of storing the surrounding environment are employed. The first technique 
was sphere mapping, in which a single texture contains the image of the surroundings as 
reflected on a mirror ball. It has been almost entirely surpassed by cube mapping, in 
which the environment is projected onto the six faces of a cube and stored as six square 
textures or unfolded into six square regions of a single texture. Other projections that 
have some superior mathematical or computational properties include the paraboloid 
mapping, the pyramid mapping, the octahedron mapping, and the HEALPix 
mapping. 



The reflection mapping approach is more efficient than the classical ray tracing approach 
of computing the exact reflection by tracing a ray and following its optical path. The 
reflection color used in the shading computation at a pixel is determined by calculating 
the reflection vector at the point on the object and mapping it to the texel in the 
environment map. This technique often produces results that are superficially similar to 
those generated by raytracing, but is less computationally expensive since the radiance 
value of the reflection comes from calculating the angles of incidence and reflection, 
followed by a texture lookup, rather than followed by tracing a ray against the scene 
geometry and computing the radiance of the ray, simplifying the GPU workload. 

However in most circumstances a mapped reflection is only an approximation of the real 
reflection. Environment mapping relies on two assumptions that are seldom satisfied: 

1) All radiance incident upon the object being shaded comes from an infinite distance. 
When this is not the case the reflection of nearby geometry appears in the wrong place on 
the reflected object. When this is the case, no parallax is seen in the reflection. 

2) The object being shaded is convex, such that it contains no self-interreflections. When 
this is not the case the object does not appear in the reflection; only the environment 
does. 

Reflection mapping is also a traditional Image-based lighting technique for creating 
reflections of real-world backgrounds on synthetic objects. 

Environment mapping is generally the fastest method of rendering a reflective surface. 
To further increase the speed of rendering, the renderer may calculate the position of the 
reflected ray at each vertex. Then, the position is interpolated across polygons to which 
the vertex is attached. This eliminates the need for recalculating every pixel's reflection 
direction. 

If normal mapping is used, each polygon has many face normals (the direction a given 
point on a polygon is facing), which can be used in tandem with an environment map to 
produce a more realistic reflection. In this case, the angle of reflection at a given point on 
a polygon will take the normal map into consideration. This technique is used to make an 
otherwise flat surface appear textured, for example corrugated metal, or brushed 
aluminium. 

Types of reflection mapping 

Sphere mapping 

Sphere mapping represents the sphere of incident illumination as though it were seen in 
the reflection of a reflective sphere through an orthographic camera. The texture image 
can be created by approximating this ideal setup, or using a fisheye lens or via 
prerendering a scene with a spherical mapping. 



The spherical mapping suffers from limitations that detract from the realism of resulting 
renderings. Because spherical maps are stored as azimuthal projections of the 
environments they represent, an abrupt point of singularity (a “black hole” effect) is 
visible in the reflection on the object where texel colors at or near the edge of the map are 
distorted due to inadequate resolution to represent the points accurately. The spherical 
mapping also wastes pixels that are in the square but not in the sphere. 

The artifacts of the spherical mapping are so severe that it is effective only for viewpoints 
near that of the virtual orthographic camera. 

Cube mapping 

 
 
A diagram depicting an apparent reflection being provided by cube mapped reflection. 
The map is actually projected onto the surface from the point of view of the observer. 
Highlights which in raytracing would be provided by tracing the ray and determining the 
angle made with the normal, can be 'fudged', if they are manually painted into the texture 
field (or if they already appear there depending on how the texture map was obtained), 
from where they will be projected onto the mapped object along with the rest of the 
texture detail. 



Cube mapping and other polyhedron mappings address the severe distortion of sphere 
maps. If cube maps are made and filtered correctly, they have no visible seams, and can 
be used independent of the viewpoint of the often-virtual camera acquiring the map. Cube 
and other polyhedron maps have since superseded sphere maps in most computer 
graphics applications, with the exception of acquiring image-based lighting. 

Generally, cube mapping uses the same skybox that is used in outdoor renderings. Cube 
mapped reflection is done by determining the vector that the object is being viewed at. 
This camera ray is reflected about the surface normal of where the camera vector 
intersects the object. This results in the reflected ray which is then passed to the cube 
map to get the texel which provides the radiance value used in the lighting calculation. 
This creates the effect that the object is reflective. 

 
 

Example of a three-dimensional model using cube mapped reflection 

HEALPix mapping 

HEALPix environment mapping is similar to the other polyhedron mappings, but can be 
hierarchical, thus providing a unified framework for generating polyhedra that better 
approximate the sphere. This allows lower distortion at the cost of increased computation. 

History 

Precursor work in texture mapping had been established by Edwin Catmull, with 
refinements for curved surfaces by James Blinn, in 1974.  Blinn went on to further refine 
his work, developing environment mapping by 1976.  

Gene Miller experimented with spherical environment mapping in 1982 at MAGI 
Synthavision. 

Wolfgang Heidrich introduced Paraboloid Mapping in 1998. 



Emil Praun introduced Octahedron Mapping in 2003 . 

Mauro Steigleder introduced Pyramid Mapping in 2005 . 

Tien-Tsin Wong, et al. introduced the existing HEALPix mapping for rendering in 2006. 

Reflection (Computer Graphics) 

 
 

 
Ray traced model demonstrating specular reflection. 

Reflection in computer graphics is used to emulate reflective objects like mirrors and 
shiny surfaces. 

Reflection is accomplished in a ray trace renderer by following a ray from the eye to the 
mirror and then calculating where it bounces from, and continuing the process until no 
surface is found, or a non-reflective surface is found. Reflection on a shiny surface like 
wood or tile can add to the photorealistic effects of a 3D rendering. 

 Polished - A Polished Reflection is an undisturbed reflection, like a mirror or 
chrome. 

 Blurry - A Blurry Reflection means that tiny random bumps on the surface of the 
material cause the reflection to be blurry. 



 Metallic - A reflection is Metallic if the highlights and reflections retain the color 
of the reflective object. 

 Glossy - This term can be misused. Sometimes it is a setting which is the opposite 
of Blurry. (When "Glossiness" has a low value, the reflection is blurry.) However, 
some people use the term "Glossy Reflection" as a synonym for "Blurred 
Reflection." Glossy used in this context means that the reflection is actually 
blurred. 

Examples 

Polished or Mirror reflection 

 
 

Mirror on wall rendered with 100% reflection. 

Mirrors are usually almost 100% reflective. 
 



Metallic Reflection 

 
 
The large sphere on the left is blue with its reflection marked as metallic. The large 
sphere on the right is the same color but does not have the metallic property selected. 

Normal, (non metallic), objects reflect light and colors in the original color of the object 
being reflected. 

Metallic objects reflect lights and colors altered by the color of the metallic object itself. 

 
 



Blurry Reflection 

 
 
The large sphere on the left has sharpness set to 100%. The sphere on the right has 
sharpness set to 50% which creates a blurry reflection. 

Many materials are imperfect reflectors, where the reflections are blurred to various 
degrees due to surface roughness that scatters the rays of the reflections. 

 
 



Glossy Reflection 

 
 
The sphere on the left has normal, metallic reflection. The sphere on the right has the 
same parameters, except that the reflection is marked as "glossy". 

 

 

 

 

 

 

 

 



Chapter 15 

Rendering (Computer Graphics) 

 

 
 
 
 

 
 

An image created by using POV-Ray 3.6. 

Rendering is the process of generating an image from a model (or models in what 
collectively could be called a scene file), by means of computer programs. A scene file 
contains objects in a strictly defined language or data structure; it would contain 
geometry, viewpoint, texture, lighting, and shading information as a description of the 
virtual scene. The data contained in the scene file is then passed to a rendering program 
to be processed and output to a digital image or raster graphics image file. The term 



"rendering" may be by analogy with an "artist's rendering" of a scene. Though the 
technical details of rendering methods vary, the general challenges to overcome in 
producing a 2D image from a 3D representation stored in a scene file are outlined as the 
graphics pipeline along a rendering device, such as a GPU. A GPU is a purpose-built 
device able to assist a CPU in performing complex rendering calculations. If a scene is to 
look relatively realistic and predictable under virtual lighting, the rendering software 
should solve the rendering equation. The rendering equation doesn't account for all 
lighting phenomena, but is a general lighting model for computer-generated imagery. 
'Rendering' is also used to describe the process of calculating effects in a video editing 
file to produce final video output. 

Rendering is one of the major sub-topics of 3D computer graphics, and in practice always 
connected to the others. In the graphics pipeline, it is the last major step, giving the final 
appearance to the models and animation. With the increasing sophistication of computer 
graphics since the 1970s onward, it has become a more distinct subject. 

Rendering has uses in architecture, video games, simulators, movie or TV special effects, 
and design visualization, each employing a different balance of features and techniques. 
As a product, a wide variety of renderers are available. Some are integrated into larger 
modeling and animation packages, some are stand-alone, some are free open-source 
projects. On the inside, a renderer is a carefully engineered program, based on a selective 
mixture of disciplines related to: light physics, visual perception, mathematics and 
software development. 

In the case of 3D graphics, rendering may be done slowly, as in pre-rendering, or in real 
time. Pre-rendering is a computationally intensive process that is typically used for movie 
creation, while real-time rendering is often done for 3D video games which rely on the 
use of graphics cards with 3D hardware accelerators. 

Usage 

When the pre-image (a wireframe sketch usually) is complete, rendering is used, which 
adds in bitmap textures or procedural textures, lights, bump mapping and relative position 
to other objects. The result is a completed image the consumer or intended viewer sees. 

For movie animations, several images (frames) must be rendered, and stitched together in 
a program capable of making an animation of this sort. Most 3D image editing programs 
can do this. 



Features 

 
 

Image rendered with computer aided design. 

A rendered image can be understood in terms of a number of visible features. Rendering 
research and development has been largely motivated by finding ways to simulate these 
efficiently. Some relate directly to particular algorithms and techniques, while others are 
produced together. 

 shading — how the color and brightness of a surface varies with lighting 
 texture-mapping — a method of applying detail to surfaces 
 bump-mapping — a method of simulating small-scale bumpiness on surfaces 



 fogging/participating medium — how light dims when passing through non-clear 
atmosphere or air 

 shadows — the effect of obstructing light 
 soft shadows — varying darkness caused by partially obscured light sources 
 reflection — mirror-like or highly glossy reflection 
 transparency (optics), transparency (graphic) or opacity — sharp transmission of 

light through solid objects 
 translucency — highly scattered transmission of light through solid objects 
 refraction — bending of light associated with transparency 
 diffraction — bending, spreading and interference of light passing by an object or 

aperture that disrupts the ray 
 indirect illumination — surfaces illuminated by light reflected off other surfaces, 

rather than directly from a light source (also known as global illumination) 
 caustics (a form of indirect illumination) — reflection of light off a shiny object, 

or focusing of light through a transparent object, to produce bright highlights on 
another object 

 depth of field — objects appear blurry or out of focus when too far in front of or 
behind the object in focus 

 motion blur — objects appear blurry due to high-speed motion, or the motion of 
the camera 

 non-photorealistic rendering — rendering of scenes in an artistic style, intended to 
look like a painting or drawing 

Techniques 

Many rendering algorithms have been researched, and software used for rendering may 
employ a number of different techniques to obtain a final image. 

Tracing every particle of light in a scene is nearly always completely impractical and 
would take a stupendous amount of time. Even tracing a portion large enough to produce 
an image takes an inordinate amount of time if the sampling is not intelligently restricted. 

Therefore, four loose families of more-efficient light transport modelling techniques have 
emerged: rasterization, including scanline rendering, geometrically projects objects in the 
scene to an image plane, without advanced optical effects; ray casting considers the scene 
as observed from a specific point-of-view, calculating the observed image based only on 
geometry and very basic optical laws of reflection intensity, and perhaps using Monte 
Carlo techniques to reduce artifacts; and ray tracing is similar to ray casting, but employs 
more advanced optical simulation, and usually uses Monte Carlo techniques to obtain 
more realistic results at a speed that is often orders of magnitude slower. The fourth type 
of light transport techique, radiosity is not usually implemented as a rendering technique, 
but instead calculates the passage of light as it leaves the light source and illuminates 
surfaces. These surfaces are usually rendered to the display using one of the other three 
techniques. 



Most advanced software combines two or more of the techniques to obtain good-enough 
results at reasonable cost. 

Another distinction is between image order algorithms, which iterate over pixels of the 
image plane, and object order algorithms, which iterate over objects in the scene. 
Generally object order is more efficient, as there are usually fewer objects in a scene than 
pixels. 

Scanline rendering and rasterisation 

 
 

Rendering of the European Extremely Large Telescope. 

A high-level representation of an image necessarily contains elements in a different 
domain from pixels. These elements are referred to as primitives. In a schematic drawing, 
for instance, line segments and curves might be primitives. In a graphical user interface, 
windows and buttons might be the primitives. In 3D rendering, triangles and polygons in 
space might be primitives. 

If a pixel-by-pixel (image order) approach to rendering is impractical or too slow for 
some task, then a primitive-by-primitive (object order) approach to rendering may prove 
useful. Here, one loops through each of the primitives, determines which pixels in the 
image it affects, and modifies those pixels accordingly. This is called rasterization, and 
is the rendering method used by all current graphics cards. 

Rasterization is frequently faster than pixel-by-pixel rendering. First, large areas of the 
image may be empty of primitives; rasterization will ignore these areas, but pixel-by-
pixel rendering must pass through them. Second, rasterization can improve cache 
coherency and reduce redundant work by taking advantage of the fact that the pixels 



occupied by a single primitive tend to be contiguous in the image. For these reasons, 
rasterization is usually the approach of choice when interactive rendering is required; 
however, the pixel-by-pixel approach can often produce higher-quality images and is 
more versatile because it does not depend on as many assumptions about the image as 
rasterization. 

The older form of rasterization is characterized by rendering an entire face (primitive) as 
a single color. Alternatively, rasterization can be done in a more complicated manner by 
first rendering the vertices of a face and then rendering the pixels of that face as a 
blending of the vertex colors. This version of rasterization has overtaken the old method 
as it allows the graphics to flow without complicated textures (a rasterized image when 
used face by face tends to have a very block-like effect if not covered in complex 
textures; the faces aren't smooth because there is no gradual color change from one 
primitive to the next). This newer method of rasterization utilizes the graphics card's 
more taxing shading functions and still achieves better performance because the simpler 
textures stored in memory use less space. Sometimes designers will use one rasterization 
method on some faces and the other method on others based on the angle at which that 
face meets other joined faces, thus increasing speed and not hurting the overall effect. 

Ray casting 

In ray casting the geometry which has been modeled is parsed pixel by pixel, line by 
line, from the point of view outward, as if casting rays out from the point of view. Where 
an object is intersected, the color value at the point may be evaluated using several 
methods. In the simplest, the color value of the object at the point of intersection becomes 
the value of that pixel. The color may be determined from a texture-map. A more 
sophisticated method is to modify the colour value by an illumination factor, but without 
calculating the relationship to a simulated light source. To reduce artifacts, a number of 
rays in slightly different directions may be averaged. 

Rough simulations of optical properties may be additionally employed: a simple 
calculation of the ray from the object to the point of view is made. Another calculation is 
made of the angle of incidence of light rays from the light source(s), and from these as 
well as the specified intensities of the light sources, the value of the pixel is calculated. 
Another simulation uses illumination plotted from a radiosity algorithm, or a combination 
of these two. 

Raycasting is primarily used for realtime simulations, such as those used in 3D computer 
games and cartoon animations, where detail is not important, or where it is more efficient 
to manually fake the details in order to obtain better performance in the computational 
stage. This is usually the case when a large number of frames need to be animated. The 
resulting surfaces have a characteristic 'flat' appearance when no additional tricks are 
used, as if objects in the scene were all painted with matte finish. 



Ray tracing 

 
 
Spiral Sphere and Julia, Detail, a computer-generated image created by visual artist 
Robert W. McGregor using only POV-Ray 3.6 and its built-in scene description 
language. 

Ray tracing aims to simulate the natural flow of light, interpreted as particles. Often, ray 
tracing methods are utilized to approximate the solution to the rendering equation by 
applying Monte Carlo methods to it. Some of the most used methods are Path Tracing, 
Bidirectional Path Tracing, or Metropolis light transport, but also semi realistic methods 
are in use, like Whitted Style Ray Tracing, or hybrids. While most implementations let 
light propagate on straight lines, applications exist to simulate relativistic spacetime 
effects. 

In a final, production quality rendering of a ray traced work, multiple rays are generally 
shot for each pixel, and traced not just to the first object of intersection, but rather, 
through a number of sequential 'bounces', using the known laws of optics such as "angle 
of incidence equals angle of reflection" and more advanced laws that deal with refraction 
and surface roughness. 



Once the ray either encounters a light source, or more probably once a set limiting 
number of bounces has been evaluated, then the surface illumination at that final point is 
evaluated using techniques described above, and the changes along the way through the 
various bounces evaluated to estimate a value observed at the point of view. This is all 
repeated for each sample, for each pixel. 

In distribution ray tracing, at each point of intersection, multiple rays may be spawned. In 
path tracing, however, only a single ray or none is fired at each intersection, utilizing the 
statistical nature of Monte Carlo experiments. 

As a brute-force method, ray tracing has been too slow to consider for real-time, and until 
recently too slow even to consider for short films of any degree of quality, although it has 
been used for special effects sequences, and in advertising, where a short portion of high 
quality (perhaps even photorealistic) footage is required. 

However, efforts at optimizing to reduce the number of calculations needed in portions of 
a work where detail is not high or does not depend on ray tracing features have led to a 
realistic possibility of wider use of ray tracing. There is now some hardware accelerated 
ray tracing equipment, at least in prototype phase, and some game demos which show use 
of real-time software or hardware ray tracing. 

Radiosity 

Radiosity is a method which attempts to simulate the way in which directly illuminated 
surfaces act as indirect light sources that illuminate other surfaces. This produces more 
realistic shading and seems to better capture the 'ambience' of an indoor scene. A classic 
example is the way that shadows 'hug' the corners of rooms. 

The optical basis of the simulation is that some diffused light from a given point on a 
given surface is reflected in a large spectrum of directions and illuminates the area around 
it. 

The simulation technique may vary in complexity. Many renderings have a very rough 
estimate of radiosity, simply illuminating an entire scene very slightly with a factor 
known as ambiance. However, when advanced radiosity estimation is coupled with a high 
quality ray tracing algorithim, images may exhibit convincing realism, particularly for 
indoor scenes. 

In advanced radiosity simulation, recursive, finite-element algorithms 'bounce' light back 
and forth between surfaces in the model, until some recursion limit is reached. The 
colouring of one surface in this way influences the colouring of a neighbouring surface, 
and vice versa. The resulting values of illumination throughout the model (sometimes 
including for empty spaces) are stored and used as additional inputs when performing 
calculations in a ray-casting or ray-tracing model. 



Due to the iterative/recursive nature of the technique, complex objects are particularly 
slow to emulate. Prior to the standardization of rapid radiosity calculation, some graphic 
artists used a technique referred to loosely as false radiosity by darkening areas of texture 
maps corresponding to corners, joints and recesses, and applying them via self-
illumination or diffuse mapping for scanline rendering. Even now, advanced radiosity 
calculations may be reserved for calculating the ambiance of the room, from the light 
reflecting off walls, floor and ceiling, without examining the contribution that complex 
objects make to the radiosity—or complex objects may be replaced in the radiosity 
calculation with simpler objects of similar size and texture. 

Radiosity calculations are viewpoint independent which increases the computations 
involved, but makes them useful for all viewpoints. If there is little rearrangement of 
radiosity objects in the scene, the same radiosity data may be reused for a number of 
frames, making radiosity an effective way to improve on the flatness of ray casting, 
without seriously impacting the overall rendering time-per-frame. 

Because of this, radiosity is a prime component of leading real-time rendering methods, 
and has been used from beginning-to-end to create a large number of well-known recent 
feature-length animated 3D-cartoon films. 

Sampling and filtering 

One problem that any rendering system must deal with, no matter which approach it 
takes, is the sampling problem. Essentially, the rendering process tries to depict a 
continuous function from image space to colors by using a finite number of pixels. As a 
consequence of the Nyquist–Shannon sampling theorem, any spatial waveform that can 
be displayed must consist of at least two pixels, which is proportional to image 
resolution. In simpler terms, this expresses the idea that an image cannot display details, 
peaks or troughs in color or intensity, that are smaller than one pixel. 

If a naive rendering algorithm is used without any filtering, high frequencies in the image 
function will cause ugly aliasing to be present in the final image. Aliasing typically 
manifests itself as jaggies, or jagged edges on objects where the pixel grid is visible. In 
order to remove aliasing, all rendering algorithms (if they are to produce good-looking 
images) must use some kind of low-pass filter on the image function to remove high 
frequencies, a process called antialiasing. 

Optimization 

Optimizations used by an artist when a scene is being developed 

Due to the large number of calculations, a work in progress is usually only rendered in 
detail appropriate to the portion of the work being developed at a given time, so in the 
initial stages of modeling, wireframe and ray casting may be used, even where the target 
output is ray tracing with radiosity. It is also common to render only parts of the scene at 



high detail, and to remove objects that are not important to what is currently being 
developed. 

Common optimizations for real time rendering 

For real-time, it is appropriate to simplify one or more common approximations, and tune 
to the exact parameters of the scenery in question, which is also tuned to the agreed 
parameters to get the most 'bang for the buck'. 

Academic core 

The implementation of a realistic renderer always has some basic element of physical 
simulation or emulation — some computation which resembles or abstracts a real 
physical process. 

The term "physically-based" indicates the use of physical models and approximations 
that are more general and widely accepted outside rendering. A particular set of related 
techniques have gradually become established in the rendering community. 

The basic concepts are moderately straightforward, but intractable to calculate; and a 
single elegant algorithm or approach has been elusive for more general purpose 
renderers. In order to meet demands of robustness, accuracy and practicality, an 
implementation will be a complex combination of different techniques. 

Rendering research is concerned with both the adaptation of scientific models and their 
efficient application. 

The rendering equation 

This is the key academic/theoretical concept in rendering. It serves as the most abstract 
formal expression of the non-perceptual aspect of rendering. All more complete 
algorithms can be seen as solutions to particular formulations of this equation. 

 

Meaning: at a particular position and direction, the outgoing light (Lo) is the sum of the 
emitted light (Le) and the reflected light. The reflected light being the sum of the 
incoming light (Li) from all directions, multiplied by the surface reflection and incoming 
angle. By connecting outward light to inward light, via an interaction point, this equation 
stands for the whole 'light transport' — all the movement of light — in a scene. 

The Bidirectional Reflectance Distribution Function 

The Bidirectional Reflectance Distribution Function (BRDF) expresses a simple 
model of light interaction with a surface as follows: 



 

Light interaction is often approximated by the even simpler models: diffuse reflection and 
specular reflection, although both can be BRDFs. 

Geometric optics 

Rendering is practically exclusively concerned with the particle aspect of light physics — 
known as geometric optics. Treating light, at its basic level, as particles bouncing around 
is a simplification, but appropriate: the wave aspects of light are negligible in most 
scenes, and are significantly more difficult to simulate. Notable wave aspect phenomena 
include diffraction (as seen in the colours of CDs and DVDs) and polarisation (as seen in 
LCDs). Both types of effect, if needed, are made by appearance-oriented adjustment of 
the reflection model. 

Visual perception 

Though it receives less attention, an understanding of human visual perception is 
valuable to rendering. This is mainly because image displays and human perception have 
restricted ranges. A renderer can simulate an almost infinite range of light brightness and 
color, but current displays — movie screen, computer monitor, etc. — cannot handle so 
much, and something must be discarded or compressed. Human perception also has 
limits, and so does not need to be given large-range images to create realism. This can 
help solve the problem of fitting images into displays, and, furthermore, suggest what 
short-cuts could be used in the rendering simulation, since certain subtleties won't be 
noticeable. This related subject is tone mapping. 

Mathematics used in rendering includes: linear algebra, calculus, numerical mathematics, 
signal processing, and Monte Carlo methods. 

Rendering for movies often takes place on a network of tightly connected computers 
known as a render farm. 

The current state of the art in 3-D image description for movie creation is the Mental Ray 
scene description language designed at mental images and the RenderMan shading 
language designed at Pixar.  (compare with simpler 3D fileformats such as VRML or 
APIs such as OpenGL and DirectX tailored for 3D hardware accelerators). 

Other renderers (including proprietary ones) can and are sometimes used, but most other 
renderers tend to miss one or more of the often needed features like good texture filtering, 
texture caching, programmable shaders, highend geometry types like hair, subdivision or 
nurbs surfaces with tesselation on demand, geometry caching, raytracing with geometry 
caching, high quality shadow mapping, speed or patent-free implementations. Other 
highly sought features these days may include IPR and hardware rendering/shading. 
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