

First Edition, 2012

ISBN 978-81-323-4264-9

© All rights reserved.

Published by:
White Word Publications
4735/22 Prakashdeep Bldg,
Ansari Road, Darya Ganj,
Delhi - 110002
Email: info@wtbooks.com

Table of Contents

Introduction

Chapter 1- Anisotropic Filtering & Ambient Occlusion

Chapter 2 - Binary Space Partitioning

Chapter 3 - Bump Mapping

Chapter 4 - Global Illumination & Catmull–Clark Subdivision Surface

Chapter 5 - Level of Detail

Chapter 6 - Non-Uniform Rational B-Spline

Chapter 7 - Normal Mapping & Mipmap

Chapter 8 - Particle System & Painter's Algorithm

Chapter 9 - Phong Shading

Chapter 10 - Path Tracing

Chapter 11 - Photon Mapping

Chapter 12 -3D Projection

Chapter 13 - Radiosity (3D Computer Graphics)

Chapter 14 - Reflection Mapping & Reflection (Computer Graphics)

Chapter 15 - Rendering (Computer Graphics)

Introduction

3D computer graphics

3D rendering is the 3D computer graphics process of automatically converting 3D wire
frame models into 2D images with 3D photorealistic effects on a computer.

Rendering methods

Rendering is the final process of creating the actual 2D image or animation from the
prepared scene. This can be compared to taking a photo or filming the scene after the
setup is finished in real life. Several different, and often specialized, rendering methods
have been developed. These range from the distinctly non-realistic wireframe rendering
through polygon-based rendering, to more advanced techniques such as: scanline
rendering, ray tracing, or radiosity. Rendering may take from fractions of a second to
days for a single image/frame. In general, different methods are better suited for either
photo-realistic rendering, or real-time rendering.

Real-time

An example of a ray-traced image that typically takes seconds or minutes to render.

Rendering for interactive media, such as games and simulations, is calculated and
displayed in real time, at rates of approximately 20 to 120 frames per second. In real-time
rendering, the goal is to show as much information as possible as the eye can process in a
30th of a second (or one frame, in the case of 30 frame-per-second animation). The goal
here is primarily speed and not photo-realism. In fact, exploitations can be applied in the
way the eye 'perceives' the world, and as a result the final image presented is not
necessarily that of the real-world, but one close enough for the human eye to tolerate.
Rendering software may simulate such visual effects as lens flares, depth of field or
motion blur. These are attempts to simulate visual phenomena resulting from the optical
characteristics of cameras and of the human eye. These effects can lend an element of
realism to a scene, even if the effect is merely a simulated artifact of a camera. This is the

basic method employed in games, interactive worlds and VRML. The rapid increase in
computer processing power has allowed a progressively higher degree of realism even for
real-time rendering, including techniques such as HDR rendering. Real-time rendering is
often polygonal and aided by the computer's GPU.

Non real-time

Computer-generated image created by Gilles Tran.

Animations for non-interactive media, such as feature films and video, are rendered much
more slowly. Non-real time rendering enables the leveraging of limited processing power
in order to obtain higher image quality. Rendering times for individual frames may vary
from a few seconds to several days for complex scenes. Rendered frames are stored on a
hard disk then can be transferred to other media such as motion picture film or optical
disk. These frames are then displayed sequentially at high frame rates, typically 24, 25, or
30 frames per second, to achieve the illusion of movement.

When the goal is photo-realism, techniques such as ray tracing or radiosity are employed.
This is the basic method employed in digital media and artistic works. Techniques have
been developed for the purpose of simulating other naturally-occurring effects, such as
the interaction of light with various forms of matter. Examples of such techniques include
particle systems (which can simulate rain, smoke, or fire), volumetric sampling (to
simulate fog, dust and other spatial atmospheric effects), caustics (to simulate light

focusing by uneven light-refracting surfaces, such as the light ripples seen on the bottom
of a swimming pool), and subsurface scattering (to simulate light reflecting inside the
volumes of solid objects such as human skin).

The rendering process is computationally expensive, given the complex variety of
physical processes being simulated. Computer processing power has increased rapidly
over the years, allowing for a progressively higher degree of realistic rendering. Film
studios that produce computer-generated animations typically make use of a render farm
to generate images in a timely manner. However, falling hardware costs mean that it is
entirely possible to create small amounts of 3D animation on a home computer system.
The output of the renderer is often used as only one small part of a completed motion-
picture scene. Many layers of material may be rendered separately and integrated into the
final shot using compositing software.

Reflection and shading models

Models of reflection/scattering and shading are used to describe the appearance of a
surface. Although these issues may seem like problems all on their own, they are studied
almost exclusively within the context of rendering. Modern 3D computer graphics rely
heavily on a simplified reflection model called Phong reflection model (not to be
confused with Phong shading). In refraction of light, an important concept is the
refractive index. In most 3D programming implementations, the term for this value is
"index of refraction," usually abbreviated "IOR." Shading can be broken down into two
orthogonal issues, which are often studied independently:

 Reflection/Scattering - How light interacts with the surface at a given point
 Shading - How material properties vary across the surface

Reflection

The Utah teapot

Reflection or scattering is the relationship between incoming and outgoing illumination at
a given point. Descriptions of scattering are usually given in terms of a bidirectional
scattering distribution function or BSDF. Popular reflection rendering techniques in 3D
computer graphics include:

 Flat shading: A technique that shades each polygon of an object based on the
polygon's "normal" and the position and intensity of a light source.

 Gouraud shading: Invented by H. Gouraud in 1971, a fast and resource-conscious
vertex shading technique used to simulate smoothly shaded surfaces.

 Texture mapping: A technique for simulating a large amount of surface detail by
mapping images (textures) onto polygons.

 Phong shading: Invented by Bui Tuong Phong, used to simulate specular
highlights and smooth shaded surfaces.

 Bump mapping: Invented by Jim Blinn, a normal-perturbation technique used to
simulate wrinkled surfaces.

 Cel shading: A technique used to imitate the look of hand-drawn animation.

Shading

Shading addresses how different types of scattering are distributed across the surface
(i.e., which scattering function applies where). Descriptions of this kind are typically
expressed with a program called a shader. (Note that there is some confusion since the
word "shader" is sometimes used for programs that describe local geometric variation.) A
simple example of shading is texture mapping, which uses an image to specify the diffuse
color at each point on a surface, giving it more apparent detail.

Transport

Transport describes how illumination in a scene gets from one place to another. Visibility
is a major component of light transport.

Projection

Perspective Projection

The shaded three-dimensional objects must be flattened so that the display device -
namely a monitor - can display it in only two dimensions, this process is called 3D
projection. This is done using projection and, for most applications, perspective
projection. The basic idea behind perspective projection is that objects that are further
away are made smaller in relation to those that are closer to the eye. Programs produce
perspective by multiplying a dilation constant raised to the power of the negative of the
distance from the observer. A dilation constant of one means that there is no perspective.
High dilation constants can cause a "fish-eye" effect in which image distortion begins to
occur. Orthographic projection is used mainly in CAD or CAM applications where
scientific modeling requires precise measurements and preservation of the third
dimension.

Chapter 1

Anisotropic Filtering & Ambient
Occlusion

Anisotropic Filtering

An illustration of texture filtering methods showing a trilinear mipmapped texture on the
left and the same texture enhanced with anisotropic texture filtering on the right.

In 3D computer graphics, anisotropic filtering (abbreviated AF) is a method of
enhancing the image quality of textures on surfaces that are at oblique viewing angles
with respect to the camera where the projection of the texture (not the polygon or other
primitive on which it is rendered) appears to be non-orthogonal (thus the origin of the
word: "an" for not, "iso" for same, and "tropic" from tropism, relating to direction;
anisotropic filtering does not filter the same in every direction).

Like bilinear and trilinear filtering Anisotropic filtering eliminates aliasing effects, but
improves on these other techniques by reducing blur and preserving detail at extreme
viewing angles.

Anisotropic filtering is relatively intensive (primarily memory bandwidth and to some
degree computationally, though the standard space-time tradeoff rules apply) and only
became a standard feature of consumer-level graphics cards in the late 1990s. Anisotropic
filtering is now common in modern graphics hardware (and video driver software) and is
enabled either by users through driver settings or by graphics applications and video
games through programming interfaces.

An improvement on isotropic MIP mapping

Hereafter, it is assumed the reader is familiar with MIP mapping.

If we were to explore a more approximate anisotropic algorithm, RIP mapping (rectim in
parvo) as an extension from MIP mapping, we can understand how anisotropic filtering
gains so much texture mapping quality. If we need to texture a horizontal plane which is
at an oblique angle to the camera, traditional MIP map minification would give us
insufficient horizontal resolution due to the reduction of image frequency in the vertical
axis. This is because in MIP mapping each MIP level is isotropic, so a 256 × 256 texture
is downsized to a 128 × 128 image, then a 64 × 64 image and so on, so resolution halves
on each axis simultaneously, so a MIP map texture probe to an image will always sample
an image that is of equal frequency in each axis. Thus, when sampling to avoid aliasing
on a high-frequency axis, the other texture axes will be similarly downsampled and
therefore potentially blurred.

With RIP map anisotropic filtering, in addition to downsampling to 128 × 128, images
are also sampled to 256 × 128 and 32 × 128 etc. These anisotropically downsampled
images can be probed when the texture-mapped image frequency is different for each
texture axis and therefore one axis need not blur due to the screen frequency of another
axis and aliasing is still avoided. Unlike more general anisotropic filtering, the RIP
mapping described for illustration has a limitation in that it only supports anisotropic
probes that are axis-aligned in texture space, so diagonal anisotropy still presents a
problem even though real-use cases of anisotropic texture commonly have such
screenspace mappings.

In layman's terms, anisotropic filtering retains the "sharpness" of a texture normally lost
by MIP map texture's attempts to avoid aliasing. Anisotropic filtering can therefore be
said to maintain crisp texture detail at all viewing orientations while providing fast anti-
aliased texture filtering.

Degree of anisotropy supported

Different degrees or ratios of anisotropic filtering can be applied during rendering and
current hardware rendering implementations set an upper bound on this ratio. This degree
refers to the maximum ratio of anisotropy supported by the filtering process. So, for
example 4:1 (pronounced 4 to 1) anisotropic filtering will continue to sharpen more
oblique textures beyond the range sharpened by 2:1.

In practice what this means is that in highly oblique texturing situations a 4:1 filter will
be twice as sharp as a 2:1 filter (it will display frequencies double that of the 2:1 filter).
However, most of the scene will not require the 4:1 filter; only the more oblique and
usually more distant pixels will require the sharper filtering. This means that as the
degree of anisotropic filtering continues to double there are diminishing returns in terms
of visible quality with fewer and fewer rendered pixels affected, and the results become
less obvious to the viewer.

When one compares the rendered results of an 8:1 anisotropically filtered scene to a 16:1
filtered scene, only a relatively few highly oblique pixels, mostly on more distant
geometry, will display visibly sharper textures in the scene with the higher degree of
anisotropic filtering, and the frequency information on these few 16:1 filtered pixels will
only be double that of the 8:1 filter. The performance penalty also diminishes because
fewer pixels require the data fetches of greater anisotropy.

In the end it is the additional hardware complexity vs. these diminishing returns, which
causes an upper bound to be set on the anisotropic quality in a hardware design.
Applications and users are then free to adjust this trade-off through driver and software
settings up to this threshold.

Implementation

True anisotropic filtering probes the texture anisotropically on the fly on a per-pixel basis
for any orientation of anisotropy.

In graphics hardware, typically when the texture is sampled anisotropically, several
probes (texel samples) of the texture around the center point are taken, but on a sample
pattern mapped according to the projected shape of the texture at that pixel.

Each anisotropic filtering probe is often in itself a filtered MIP map sample, which adds
more sampling to the process. Sixteen trilinear anisotropic samples might require 128
samples from the stored texture, as trilinear MIP map filtering needs to take four samples
times two MIP levels and then anisotropic sampling (at 16-tap) needs to take sixteen of
these trilinear filtered probes.

However, this level of filtering complexity is not required all the time. There are
commonly available methods to reduce the amount of work the video rendering hardware
and must do.

Performance and optimization

The sample count required can make anisotropic filtering extremely bandwidth-intensive.
Multiple textures are common; each texture sample could be four bytes or more, so each
anisotropic pixel could require 512 bytes from texture memory, although texture
compression is commonly used to reduce this.

As a video display device can easily contain over a million pixels, and as the desired
frame rate can be as high as 30–60 frames per second (or more) the texture memory
bandwidth can become very high very quickly. Ranges of hundreds of gigabytes per
second of pipeline bandwidth for texture rendering operations is not unusual where
anisotropic filtering operations are involved.

Fortunately, several factors mitigate in favor of better performance. The probes
themselves share cached texture samples, both inter-pixel and intra-pixel. Even with 16-
tap anisotropic filtering, not all 16 taps are always needed. This tapping simplification
method works because only distant highly oblique pixel fills tend to be highly
anisotropic.

 Such anisotropic pixel fills tends to cover small regions of the screen (ie generally
under 10%).

 Texture magnification filters (as a general rule) require no anisotropic filtering.

Ambient Occlusion

Ambient occlusion is a shading method used in 3D computer graphics which helps add
realism to local reflection models by taking into account attenuation of light due to
occlusion. Ambient occlusion attempts to approximate the way light radiates in real life,
especially off what are normally considered non-reflective surfaces.

Unlike local methods like Phong shading, ambient occlusion is a global method, meaning
the illumination at each point is a function of other geometry in the scene. However, it is
a very crude approximation to full global illumination. The soft appearance achieved by
ambient occlusion alone is similar to the way an object appears on an overcast day.

Method of implementation

Ambient occlusion is most often calculated by casting rays in every direction from the
surface. Rays which reach the background or “sky” increase the brightness of the surface,
whereas a ray which hits any other object contributes no illumination. As a result, points
surrounded by a large amount of geometry are rendered dark, whereas points with little
geometry on the visible hemisphere appear light.

Ambient occlusion is related to accessibility shading, which determines appearance based
on how easy it is for a surface to be touched by various elements (e.g., dirt, light, etc.). It
has been popularized in production animation due to its relative simplicity and efficiency.
In the industry, ambient occlusion is often referred to as "sky light."

The ambient occlusion shading model has the nice property of offering a better
perception of the 3d shape of the displayed objects. This was shown in a paper where the

authors report the results of perceptual experiments showing that depth discrimination
under diffuse uniform sky lighting is superior to that predicted by a direct lighting model.

ambient occlusion

diffuse only

combined ambient and diffuse

The occlusion at a point on a surface with normal can be computed by integrating
the visibility function over the hemisphere Ω with respect to projected solid angle:

where is the visibility function at , defined to be zero if is occluded in the
direction and one otherwise, and is the infinitesimal solid angle step of the
integration variable . A variety of techniques are used to approximate this integral in
practice: perhaps the most straightforward way is to use the Monte Carlo method by

casting rays from the point and testing for intersection with other scene geometry (i.e.,
ray casting). Another approach (more suited to hardware acceleration) is to render the
view from by rasterizing black geometry against a white background and taking the
(cosine-weighted) average of rasterized fragments. This approach is an example of a
"gathering" or "inside-out" approach, whereas other algorithms (such as depth-map
ambient occlusion) employ "scattering" or "outside-in" techniques.

In addition to the ambient occlusion value, a "bent normal" vector is often generated,
which points in the average direction of unoccluded samples. The bent normal can be
used to look up incident radiance from an environment map to approximate image-based
lighting. However, there are some situations in which the direction of the bent normal is a
misrepresentation of the dominant direction of illumination, e.g.,

In this example the bent normal Nb has an unfortunate direction, since it is pointing at an
occluded surface.

In this example, light may reach the point p only from the left or right sides, but the bent
normal points to the average of those two sources, which is, unfortunately, directly
toward the obstruction.

Awards

In 2010, Hayden Landis, Ken McGaugh and Hilmar Koch were awarded a Scientific and
Technical Academy Award for their work on ambient occlusion rendering.

Chapter 2

Binary Space Partitioning

Binary space partitioning (BSP) is a method for recursively subdividing a space into
convex sets by hyperplanes. This subdivision gives rise to a representation of the scene
by means of a tree data structure known as a BSP tree.

Originally, this approach was proposed in 3D computer graphics to increase the rendering
efficiency by precomputing the BSP tree prior to low-level rendering operations. Some
other applications include performing geometrical operations with shapes (constructive
solid geometry) in CAD, collision detection in robotics and 3D computer games, and
other computer applications that involve handling of complex spatial scenes.

Overview

In computer graphics it is desirable that the drawing of a scene be both correct and quick.
A simple way to draw a scene is the painter's algorithm: draw it from back to front
painting over the background with each closer object. However, that approach is quite
limited, since time is wasted drawing objects that will be overdrawn later, and not all
objects will be drawn correctly.

Z-buffering can ensure that scenes are drawn correctly and eliminate the ordering step of
the painter's algorithm, but it is expensive in terms of memory use. BSP trees will split up
objects so that the painter's algorithm will draw them correctly without need of a Z-buffer
and eliminate the need to sort the objects; as a simple tree traversal will yield them in the
correct order. It also serves as a basis for other algorithms, such as visibility lists, which
attempt to reduce overdraw.

The downside is the requirement for a time consuming pre-processing of the scene, which
makes it difficult and inefficient to directly implement moving objects into a BSP tree.
This is often overcome by using the BSP tree together with a Z-buffer, and using the Z-
buffer to correctly merge movable objects such as doors and characters onto the
background scene.

BSP trees are often used by 3D computer games, particularly first-person shooters and
those with indoor environments. Probably the earliest game to use a BSP data structure
was Doom. Other uses include ray tracing and collision detection.

Generation

Binary space partitioning is a generic process of recursively dividing a scene into two
until the partitioning satisfies one or more requirements. The specific method of division
varies depending on its final purpose. For instance, in a BSP tree used for collision
detection, the original object would be partitioned until each part becomes simple enough
to be individually tested, and in rendering it is desirable that each part be convex so that
the painter's algorithm can be used.

The final number of objects will inevitably increase since lines or faces that cross the
partitioning plane must be split into two, and it is also desirable that the final tree remains
reasonably balanced. Therefore the algorithm for correctly and efficiently creating a good
BSP tree is the most difficult part of an implementation. In 3D space, planes are used to
partition and split an object's faces; in 2D space lines split an object's segments.

The following picture illustrates the process of partitioning an irregular polygon into a
series of convex ones. Notice how each step produces polygons with fewer segments
until arriving at G and F, which are convex and require no further partitioning. In this
particular case, the partitioning line was picked between existing vertices of the polygon
and intersected none of its segments. If the partitioning line intersects a segment, or face
in a 3D model, the offending segment(s) or face(s) have to be split into two at the
line/plane because each resulting partition must be a full, independent object.

1. A is the root of the tree and the entire polygon
2. A is split into B and C
3. B is split into D and E.
4. D is split into F and G, which are convex and hence become leaves on the tree.

Since the usefulness of a BSP tree depends upon how well it was generated, a good
algorithm is essential. Most algorithms will test many possibilities for each partition until
they find a good compromise. They might also keep backtracking information in
memory, so that if a branch of the tree is found to be unsatisfactory, other alternative
partitions may be tried. Thus producing a tree usually requires long computations.

BSP trees are also used to represent natural images. Construction methods for BSP trees
representing images were first introduced as efficient representations in which only a few
hundred nodes can represent an image that normally requires hundreds of thousands of
pixels. Fast algorithms have also been developed to construct BSP trees of images using
computer vision and signal processing algorithms. These algorithms, in conjunction with
advanced entropy coding and signal approximation approaches, were used to develop
image compression methods.

Rendering a scene with visibility information from the BSP tree

BSP trees are used to improve rendering performance in calculating visible triangles for
the painter's algorithm for instance. The tree can be traversed in linear time from an
arbitrary viewpoint.

Since a painter's algorithm works by drawing polygons farthest from the eye first, the
following code recurses to the bottom of the tree and draws the polygons. As the
recursion unwinds, polygons closer to the eye are drawn over far polygons. Because the
BSP tree already splits polygons into trivial pieces, the hardest part of the painter's
algorithm is already solved - code for back to front tree traversal.

traverse_tree(bsp_tree* tree, point eye)
{
 location = tree->find_location(eye);

 if(tree->empty())
 return;

 if(location > 0) // if eye in front of location
 {
 traverse_tree(tree->back, eye);
 display(tree->polygon_list);
 traverse_tree(tree->front, eye);
 }
 else if(location < 0) // eye behind location
 {
 traverse_tree(tree->front, eye);
 display(tree->polygon_list);
 traverse_tree(tree->back, eye);
 }
 else // eye coincidental with partition hyperplane
 {
 traverse_tree(tree->front, eye);
 traverse_tree(tree->back, eye);
 }
}

Other space partitioning structures

BSP trees divide a region of space into two subregions at each node. They are related to
quadtrees and octrees, which divide each region into four or eight subregions,
respectively.

Relationship Table

Name p s

Binary Space Partition 1 2

Quadtree 2 4

Octree 3 8

where p is the number of dividing planes used, and s is the number of subregions formed.

BSP trees can be used in spaces with any number of dimensions, but quadtrees and
octrees are most useful in subdividing 2- and 3-dimensional spaces, respectively. Another
kind of tree that behaves somewhat like a quadtree or octree, but is useful in any number
of dimensions, is the kd-tree.

Timeline

 1969 Schumacker et al. published a report that described how carefully positioned
planes in a virtual environment could be used to accelerate polygon ordering. The
technique made use of depth coherence, which states that a polygon on the far
side of the plane cannot, in any way, obstruct a closer polygon. This was used in
flight simulators made by GE as well as Evans and Sutherland. However, creation
of the polygonal data organization was performed manually by scene designer.

 1980 Fuchs et al. [FUCH80] extended Schumacker’s idea to the representation of
3D objects in a virtual environment by using planes that lie coincident with
polygons to recursively partition the 3D space. This provided a fully automated
and algorithmic generation of a hierarchical polygonal data structure known as a
Binary Space Partitioning Tree (BSP Tree). The process took place as an off-line
preprocessing step that was performed once per environment/object. At run-time,
the view-dependent visibility ordering was generated by traversing the tree.

 1981 Naylor's Ph.D thesis containing a full development of both BSP trees and a
graph-theoretic approach using strongly connected components for pre-computing
visibility, as well as the connection between the two methods. BSP trees as a
dimension independent spatial search structure was emphasized, with applications
to visible surface determination. The thesis also included the first empirical data
demonstrating that the size of the tree and the number of new polygons was
reasonable (using a model of the Space Shuttle).

 1983 Fuchs et al. describe a micro-code implementation of the BSP tree algorithm
on an Ikonas frame buffer system. This was the first demonstration of real-time
visible surface determination using BSP trees.

 1987 Thibault and Naylor described how arbitrary polyhedra may be represented
using a BSP tree as opposed to the traditional b-rep (boundary representation).
This provided a solid representation vs. a surface based-representation. Set
operations on polyhedra were described using a tool, enabling Constructive Solid
Geometry (CSG) in real-time. This was the fore runner of BSP level design using
brushes, introduced in the Quake editor and picked up in the Unreal Editor.

 1990 Naylor, Amanatides, and Thibault provide an algorithm for merging two bsp
trees to form a new bsp tree from the two original trees. This provides many
benefits including: combining moving objects represented by BSP trees with a
static environment (also represented by a BSP tree), very efficient CSG operations
on polyhedra, exact collisions detection in O(log n * log n), and proper ordering
of transparent surfaces contained in two interpenetrating objects (has been used
for an x-ray vision effect).

 1990 Teller and Séquin proposed the offline generation of potentially visible sets
to accelerate visible surface determination in orthogonal 2D environments.

 1991 Gordon and Chen [CHEN91] described an efficient method of performing
front-to-back rendering from a BSP tree, rather than the traditional back-to-front
approach. They utilised a special data structure to record, efficiently, parts of the
screen that have been drawn, and those yet to be rendered. This algorithm,
together with the description of BSP Trees in the standard computer graphics
textbook of the day (Foley, Van Dam, Feiner and Hughes) was used by John
Carmack in the making of Doom.

 1992 Teller’s PhD thesis described the efficient generation of potentially visible
sets as a pre-processing step to acceleration real-time visible surface
determination in arbitrary 3D polygonal environments. This was used in Quake
and contributed significantly to that game's performance.

 1993 Naylor answers the question of what characterizes a good BSP tree. He used
expected case models (rather than worst case analysis) to mathematically measure
the expected cost of searching a tree and used this measure to build good BSP
trees. Intuitively, the tree represents an object in a multi-resolution fashion (more
exactly, as a tree of approximations). Parallels with Huffman codes and
probabilistic binary search trees are drawn.

 1993 Hayder Radha's PhD thesis described (natural) image representation
methods using BSP trees. This includes the development of an optimal BSP-tree
construction framework for any arbitrary input image. This framework is based on
a new image transform, known as the Least-Square-Error (LSE) Partitioning Line

(LPE) transform. H. Radha' thesis also developed an optimal rate-distortion (RD)
image compression framework and image manipulation approaches using BSP
trees.

Chapter 3

Bump Mapping

A sphere without bump mapping (left). A bump map to be applied to the sphere (middle).
The sphere with the bump map applied (right) appears to have a mottled surface
resembling an orange. Bump maps achieve this effect by changing how an illuminated
surface reacts to light without actually modifying the size or shape of the surface

Bump mapping is a technique in computer graphics for simulating bumps and wrinkles
on the surface of an object. This is achieved by perturbing the surface normals of the
object and using the perturbed normal during illumination calculations. The result is an
apparently bumpy surface rather than a perfectly smooth surface although the surface of
the underlying object is not actually changed. Bump mapping was introduced by Blinn in
1978.

Normal and parallax mapping are the most commonly used ways of making bumps, using
new techniques that makes bump mapping using a greyscale obsolete.

Bump mapping basics

Bump mapping is limited in that it does not actually modify the shape of the underlying
object. On the left, a mathematical function defining a bump map simulates a crumbling
surface on a sphere, but the object's outline and shadow remain those of a perfect sphere.
On the right, the same function is used to modify the surface of a sphere by generating an
isosurface. This actually models a sphere with a bumpy surface with the result that both
its outline and its shadow are rendered realistically.

Bump mapping is a technique in computer graphics to make a rendered surface look more
realistic by modeling the interaction of a bumpy surface texture with lights in the
environment. Bump mapping does this by changing the brightness of the pixels on the
surface in response to a heightmap that is specified for each surface.

When rendering a 3D scene, the brightness and color of the pixels are determined by the
interaction of a 3D model with lights in the scene. After it is determined that an object is
visible, trigonometry is used to calculate the "geometric" surface normal of the object,
defined as a vector at each pixel position on the object.

The geometric surface normal then defines how strongly the object interacts with light
coming from a given direction using Phong shading or a similar lighting algorithm. Light
traveling perpendicular to a surface interacts more strongly than light that is more parallel
to the surface. After the initial geometry calculations, a colored texture is often applied to
the model to make the object appear more realistic.

After texturing, a calculation is performed for each pixel on the object's surface:

1. Look up the position on the heightmap that corresponds to the position on the
surface.

2. Calculate the surface normal of the heightmap.
3. Add the surface normal from step two to the geometric surface normal so that the

normal points in a new direction.
4. Calculate the interaction of the new "bumpy" surface with lights in the scene

using, for example, the Phong shading.

The result is a surface that appears to have real depth. The algorithm also ensures that the
surface appearance changes as lights in the scene are moved around. Normal mapping is
the most commonly used bump mapping technique, but there are other alternatives, such
as parallax mapping.

A limitation with bump mapping is that it perturbs only the surface normals without
changing the underlying surface itself. Silhouettes and shadows therefore remain
unaffected. This limitation can be overcome by techniques including the displacement
mapping where bumps are actually applied to the surface or using an isosurface.

For the purposes of rendering in real-time, bump mapping is often referred to as a "pass",
as in multi-pass rendering, and can be implemented as multiple passes (often three or
four) to reduce the number of trigonometric calculations that are required.

Realtime bump mapping techniques

3D graphics programmers sometimes use a lower quality, faster bump mapping technique
in order to simulate bump mapping. One such method uses texel index alteration instead
of altering surface normals. As of GeForce 2 class cards this technique is implemented in
graphics accelerator hardware.

Full-screen bump mapping, which could be easily implemented with a very simple and
fast rendering loop, was a common visual effect when bump-mapping was first
introduced.

Emboss bump mapping

This technique uses texture maps to generate bump mapping effects without requiring a
custom renderer. This multi-pass algorithm is an extension and refinement of texture
embossing. This process duplicates the first texture image, shifts it over to the desired
amount of bump, darkens the texture underneath, cuts out the appropriate shape from the
texture on top, and blends the two textures into one. This is called two-pass emboss bump
mapping because it requires two textures.

It is simple to implement and requires no custom hardware, and is therefore limited by
the speed of the CPU. However, it only affects diffuse lighting, and the illusion is broken
depending on the angle of the light.

Environment mapped bump mapping

Matrox G400 Tech Demo with EMBM

The Matrox G400 chip supports a texture-based surface detailing method called
Environment Mapped Bump Mapping (EMBM). It was originally developed by
BitBoys Oy and licensed to Matrox. EMBM was first introduced in DirectX 6.0.

The Radeon 7200 also includes hardware support for EMBM, which was demonstrated in
the technical demonstration "Radeon's Ark". However, EMBM was not supported by
other graphics chips, such as NVIDIA's GeForce 256 through to the GeForce 2, which
only supported the simpler Dot-3 BM. Due to this lack of industry-wide support, and its
toll on the limited graphics hardware of the time, EMBM only saw limited use during
G400's time. Only a few games supported the feature, such as Dungeon Keeper 2 and
Millennium Soldier: Expendable.

EMBM initially required specialized hardware within the chip for its calculations, such as
the Matrox G400 or Radeon 7200. It could also be rendered by the programmable pixel
shaders of later DirectX 8.0 accelerators like the GeForce 3 and Radeon 8500.

Chapter 4

Global Illumination & Catmull–Clark
Subdivision Surface

Global Illumination

Rendering without global illumination. Areas that lie outside of the ceiling lamp's direct
light lack definition. For example, the lamp's housing appears completely uniform.
Without the ambient light added into the render, it would appear uniformly black.

Rendering with global illumination. Light is reflected by surfaces, and colored light
transfers from one surface to another. Notice how color from the red wall and green wall
(not visible) reflects onto other surfaces in the scene. Also notable is the caustic projected
onto the red wall from light passing through the glass sphere.

Global illumination is a general name for a group of algorithms used in 3D computer
graphics that are meant to add more realistic lighting to 3D scenes. Such algorithms take
into account not only the light which comes directly from a light source (direct
illumination), but also subsequent cases in which light rays from the same source are
reflected by other surfaces in the scene, whether reflective or non (indirect illumination).

Theoretically reflections, refractions, and shadows are all examples of global
illumination, because when simulating them, one object affects the rendering of another
object (as opposed to an object being affected only by a direct light). In practice,
however, only the simulation of diffuse inter-reflection or caustics is called global
illumination.

Images rendered using global illumination algorithms often appear more photorealistic
than images rendered using only direct illumination algorithms. However, such images
are computationally more expensive and consequently much slower to generate. One
common approach is to compute the global illumination of a scene and store that
information with the geometry, i.e., radiosity. That stored data can then be used to
generate images from different viewpoints for generating walkthroughs of a scene
without having to go through expensive lighting calculations repeatedly.

Radiosity, ray tracing, beam tracing, cone tracing, path tracing, Metropolis light
transport, ambient occlusion, photon mapping, and image based lighting are examples of
algorithms used in global illumination, some of which may be used together to yield
results that are not fast, but accurate.

These algorithms model diffuse inter-reflection which is a very important part of global
illumination; however most of these (excluding radiosity) also model specular reflection,
which makes them more accurate algorithms to solve the lighting equation and provide a
more realistically illuminated scene.

The algorithms used to calculate the distribution of light energy between surfaces of a
scene are closely related to heat transfer simulations performed using finite-element
methods in engineering design.

In real-time 3D graphics, the diffuse inter-reflection component of global illumination is
sometimes approximated by an "ambient" term in the lighting equation, which is also
called "ambient lighting" or "ambient color" in 3D software packages. Though this
method of approximation (also known as a "cheat" because it's not really a global
illumination method) is easy to perform computationally, when used alone it does not
provide an adequately realistic effect. Ambient lighting is known to "flatten" shadows in
3D scenes, making the overall visual effect more bland. However, used properly, ambient
lighting can be an efficient way to make up for a lack of processing power.

Procedure

For the simulation of global illumination are used in 3D programs, more and more
specialized algorithms that can effectively simulate the global illumination. These are, for
example, path tracing or photon mapping, under certain conditions, including radiosity.
These are always methods to try to solve the rendering equation.

The following approaches can be distinguished here:

 Inversion:
o is not applied in practice

 Expansion:
o bi-directional approach: Photon Mapping + Distributed ray tracing, Bi-

directional path tracing, Metropolis light transport
 Iteration: Lntle + = L(n − 1)

o Radiosity

In Light path notation global lighting the paths of the type L (D | S) corresponds * E.

Image-based lighting

Another way to simulate real global illumination, is the use of High dynamic range
images (HDRIs), also known as environment maps, which encircle the scene, and they
illuminate. This process is known as image-based lighting.

Catmull–Clark Subdivision Surface

First three steps of Catmull–Clark subdivision of a cube with subdivision surface below

The Catmull–Clark algorithm is used in computer graphics to create smooth surfaces by
subdivision surface modeling. It was devised by Edwin Catmull and Jim Clark in 1978 as
a generalization of bi-cubic uniform B-spline surfaces to arbitrary topology. In 2005,
Edwin Catmull received an Academy Award for Technical Achievement together with
Tony DeRose and Jos Stam for their invention and application of subdivision surfaces.

Recursive evaluation

Catmull–Clark surfaces are defined recursively, using the following refinement scheme:

Start with a mesh of an arbitrary polyhedron. All the vertices in this mesh shall be called
original points.

 For each face, add a face point
o Set each face point to be the centroid of all original points for the

respective face.
 For each edge, add an edge point.

o Set each edge point to be the average of the two neighbouring face points
and its two original endpoints.

 For each face point, add an edge for every edge of the face, connecting the face
point to each edge point for the face.

 For each original point P, take the average F of all n face points for faces
touching P, and take the average R of all n edge midpoints for edges touching P,
where each edge midpoint is the average of its two endpoint vertices. Move each
original point to the point

(This is the barycenter of P, R and F with respective weights (n-3), 2 and 1. This
arbitrary-looking formula was chosen by Catmull and Clark based on the aesthetic
appearance of the resulting surfaces rather than on a mathematical derivation.)

The new mesh will consist only of quadrilaterals, which won't in general be planar. The
new mesh will generally look smoother than the old mesh.

Repeated subdivision results in smoother meshes. It can be shown that the limit surface
obtained by this refinement process is at least at extraordinary vertices and

everywhere else (when n indicates how many derivatives are continuous, we speak of
continuity). After one iteration, the number of extraordinary points on the surface

remains constant.

Exact evaluation

The limit surface of Catmull–Clark subdivision surfaces can also be evaluated directly,
without any recursive refinement. This can be accomplished by means of the technique of
Jos Stam . This method reformulates the recursive refinement process into a matrix
exponential problem, which can be solved directly by means of matrix diagonalization.

Chapter 5

Level of Detail

In computer graphics, accounting for level of detail involves decreasing the complexity
of a 3D object representation as it moves away from the viewer or according other
metrics such as object importance, eye-space speed or position. Level of detail techniques
increases the efficiency of rendering by decreasing the workload on graphics pipeline
stages, usually vertex transformations. The reduced visual quality of the model is often
unnoticed because of the small effect on object appearance when distant or moving fast.

Although most of the time LOD is applied to geometry detail only, the basic concept can
be generalized. Recently, LOD techniques included also shader management to keep
control of pixel complexity. A form of level of detail management has been applied to
textures for years, under the name of mipmapping, also providing higher rendering
quality.

It is commonplace to say that "an object has been LOD'd" when the object is simplified
by the underlying LODding algorithm.

Historical reference

The origin of all the LoD algorithms for 3D computer graphics can be traced back to an
article by James H. Clark in the October 1976 issue of Communications of the ACM. At
the time, computers were monolithic and rare, and graphics was being driven by
researchers. The hardware itself was completely different, both architecturally and
performance-wise. As such, many differences could be observed with regard to today's
algorithms but also many common points.

The original algorithm presented a much more generic approach to what will be
discussed here. After introducing some available algorithms for geometry management, it
is stated that most fruitful gains came from "...structuring the environments being
rendered", allowing to exploit faster transformations and clipping operations.

The same environment structuring is now proposed as a way to control varying detail
thus avoiding unnecessary computations, yet delivering adequate visual quality:

“ For example, a dodecahedron looks like a sphere from a sufficiently
large distance and thus can be used to model it so long as it is viewed
from that or a greater distance. However, if it must ever be viewed more
closely, it will look like a dodecahedron. One solution to this is simply
to define it with the most detail that will ever be necessary. However,
then it might have far more detail than is needed to represent it at large
distances, and in a complex environment with many such objects, there
would be too many polygons (or other geometric primitives) for the
visible surface algorithms to efficiently handle. ”

The proposed algorithm envisions a tree data structure which encodes in its arcs both
transformations and transitions to more detailed objects. In this way, each node encodes
an object and according to a fast heuristic, the tree is descended to the leafs which
provide each object with more detail. When a leaf is reached, other methods could be
used when higher detail is needed, such as Catmull's recursive subdivision.

“ The significant point, however, is that in a complex environment, the
amount of information presented about the various objects in the
environment varies according to the fraction of the field of view
occupied by those objects. ”

The paper then introduces clipping (not to be confused with culling (computer graphics),
although often similar), various considerations on the graphical working set and its
impact on performance, interactions between the proposed algorithm and others to
improve rendering speed. Interested readers are encouraged in checking the references for
further details on the topic.

Well known approaches

Although the algorithm introduced above covers a whole range of level of detail
management techniques, real world applications usually employ different methods
according the information being rendered. Because of the appearance of the considered
objects, two main algorithm families are used.

The first is based on subdividing the space in a finite amount of regions, each with a
certain level of detail. The result is discrete amount of detail levels, from which the name
Discrete LoD (DLOD). There's no way to support a smooth transition between LOD
levels at this level, although alpha blending or morphing can be used to avoid visual
popping.

The latter considers the polygon mesh being rendered as a function which must be
evaluated requiring to avoid excessive errors which are a function of some heuristic
(usually distance) themselves. The given "mesh" function is then continuously evaluated

and an optimized version is produced according to a tradeoff between visual quality and
performance. Those kind of algorithms are usually referred as Continuous LOD (CLOD).

Details on Discrete LOD

An example of various DLOD ranges. Darker areas are meant to be rendered with higher
detail. An additional culling operation is run, discarding all the information outside the
frustum (colored areas).

The basic concept of discrete LOD (DLOD) is to provide various models to represent the
same object. Obtaining those models requires an external algorithm which is often non-
trivial and subject of many polygon reduction techniques. Successive LODding
algorithms will simply assume those models are available.

DLOD algorithms are often used in performance-intensive applications with small data
sets which can easily fit in memory. Although out of core algorithms could be used, the
information granularity is not well suited to this kind of application. This kind of

algorithm is usually easier to get working, providing both faster performance and lower
CPU usage because of the few operations involved.

DLOD methods are often used for "stand-alone" moving objects, possibly including
complex animation methods. A different approach is used for geomipmapping , a popular
terrain rendering algorithm because this applies to terrain meshes which are both
graphically and topologically different from "object" meshes. Instead of computing an
error and simplify the mesh according to this, geomipmapping takes a fixed reduction
method, evaluates the error introduced and computes a distance at which the error is
acceptable. Although straightforward, the algorithm provides decent performance.

A discrete LOD example

As a simple example, consider the following sphere. A discrete LOD approach would
cache a certain number of models to be used at different distances. Because the model
can trivially be procedurally generated by its mathematical formulation, using a different
amount of sample points distributed on the surface is sufficient to generate the various
models required. This pass is not a LODding algorithm.

Visual impact comparisons and measurements

Image

Vertices ~5500 ~2880 ~1580 ~670 140

Notes
Maximum
detail,
for closeups.

Minimum
detail,
very far
objects.

To simulate a realistic transform bound scenario, we'll use an ad-hoc written application.
We'll make sure we're not CPU bound by using simple algorithms and minimum
fragment operations. Each frame, the program will compute each sphere's distance and
choose a model from a pool according to this information. To easily show the concept,
the distance at which each model is used is hard coded in the source. A more involved
method would compute adequate models according to the usage distance chosen.

We use OpenGL for rendering because its high efficiency in managing small batches,
storing each model in a display list thus avoiding communication overheads. Additional
vertex load is given by applying two directional light sources ideally located infinitely far
away.

The following table compares the performance of LoD aware rendering and a full detail
(brute force) method.

Visual impact comparisons and measurements

 Brute DLOD

Rendered
images

Render time 27.27 ms 1.29 ms

Scene vertices
(thousands)

2328.48 109.44

Hierarchical LOD

Because hardware is geared towards large amounts of detail, rendering low polygon
objects may score sub-optimal performances. HLOD avoids the problem by grouping
different objects together. This allows for higher efficiency as well as taking advantage of
proximity considerations.

Chapter 6

Non-Uniform Rational B-Spline

Three-dimensional NURBS surfaces can have complex, organic shapes. Control points
influence the directions the surface takes. The outermost square below delineates the X/Y
extents of the surface.

A NURBS curve.

Non-uniform rational basis spline (NURBS) is a mathematical model commonly used
in computer graphics for generating and representing curves and surfaces which offers
great flexibility and precision for handling both analytic and freeform shapes.

History

Development of NURBS began in the 1950s by engineers who were in need of a
mathematically precise representation of freeform surfaces like those used for ship hulls,
aerospace exterior surfaces, and car bodies, which could be exactly reproduced whenever
technically needed. Prior representations of this kind of surface only existed as a single
physical model created by a designer.

The pioneers of this development were Pierre Bézier who worked as an engineer at
Renault, and Paul de Casteljau who worked at Citroën, both in France. Bézier worked
nearly parallel to de Casteljau, neither knowing about the work of the other. But because
Bézier published the results of his work, the average computer graphics user today
recognizes splines — which are represented with control points lying off the curve itself
— as Bézier splines, while de Casteljau’s name is only known and used for the
algorithms he developed to evaluate parametric surfaces. In the 1960s it became clear that
non-uniform, rational B-splines are a generalization of Bézier splines, which can be
regarded as uniform, non-rational B-splines.

At first NURBS were only used in the proprietary CAD packages of car companies. Later
they became part of standard computer graphics packages.

Real-time, interactive rendering of NURBS curves and surfaces was first made available
on Silicon Graphics workstations in 1989. In 1993, the first interactive NURBS modeller
for PCs, called NöRBS, was developed by CAS Berlin, a small startup company
cooperating with the Technical University of Berlin. Today most professional computer
graphics applications available for desktop use offer NURBS technology, which is most
often realized by integrating a NURBS engine from a specialized company.

Use

NURBS are commonly used in computer-aided design (CAD), manufacturing (CAM),
and engineering (CAE) and are part of numerous industry wide used standards, such as
IGES, STEP, ACIS, and PHIGS. NURBS tools are also found in various 3D modeling
and animation software packages, such as form•Z, Blender, Maya, Rhino3D, Cinema 4D,
Cobalt, Shark FX, and Solid Modeling Solutions. Other than this there are specialized
NURBS modeling software packages such as Autodesk Alias Surface, solidThinking and
ICEM Surf.

They allow representation of geometrical shapes in a compact form. They can be
efficiently handled by the computer programs and yet allow for easy human interaction.
NURBS surfaces are functions of two parameters mapping to a surface in three-
dimensional space. The shape of the surface is determined by control points.

In general, editing NURBS curves and surfaces is highly intuitive and predictable.
Control points are always either connected directly to the curve/surface, or act as if they
were connected by a rubber band. Depending on the type of user interface, editing can be
realized via an element’s control points, which are most obvious and common for Bézier
curves, or via higher level tools such as spline modeling or hierarchical editing.

A surface under construction, e.g. the hull of a motor yacht, is usually composed of
several NURBS surfaces known as patches. These patches should be fitted together in
such a way that the boundaries are invisible. This is mathematically expressed by the
concept of geometric continuity.

Higher-level tools exist which benefit from the ability of NURBS to create and establish
geometric continuity of different levels:

Positional continuity (G0)
holds whenever the end positions of two curves or surfaces are coincidental. The
curves or surfaces may still meet at an angle, giving rise to a sharp corner or edge
and causing broken highlights.

Tangential continuity (G1)
requires the end vectors of the curves or surfaces to be parallel, ruling out sharp
edges. Because highlights falling on a tangentially continuous edge are always
continuous and thus look natural, this level of continuity can often be sufficient.

Curvature continuity (G2)
further requires the end vectors to be of the same length and rate of length change.
Highlights falling on a curvature-continuous edge do not display any change,
causing the two surfaces to appear as one. This can be visually recognized as
“perfectly smooth”. This level of continuity is very useful in the creation of
models that require many bi-cubic patches composing one continuous surface.

Geometric continuity mainly refers to the shape of the resulting surface; since NURBS
surfaces are functions, it is also possible to discuss the derivatives of the surface with
respect to the parameters. This is known as parametric continuity. Parametric continuity
of a given degree implies geometric continuity of that degree.

First- and second-level parametric continuity (C0 and C1) are for practical purposes
identical to positional and tangential (G0 and G1) continuity. Third-level parametric
continuity (C2), however, differs from curvature continuity in that its parameterization is
also continuous. In practice, C2 continuity is easier to achieve if uniform B-splines are
used.

The definition of the continuity 'Cn' requires that the nth derivative of the curve/surface
(dnC(u) / dun) are equal at a joint. Note that the (partial) derivatives of curves and
surfaces are vectors that have a direction and a magnitude. Both should be equal.

Highlights and reflections can reveal the perfect smoothing, which is otherwise
practically impossible to achieve without NURBS surfaces that have at least G2
continuity. This same principle is used as one of the surface evaluation methods whereby
a ray-traced or reflection-mapped image of a surface with white stripes reflecting on it
will show even the smallest deviations on a surface or set of surfaces. This method is
derived from car prototyping wherein surface quality is inspected by checking the quality
of reflections of a neon-light ceiling on the car surface. This method is also known as
"Zebra analysis".

Technical specifications

A NURBS curve is defined by its order, a set of weighted control points, and a knot
vector. NURBS curves and surfaces are generalizations of both B-splines and Bézier

curves and surfaces, the primary difference being the weighting of the control points
which makes NURBS curves rational (non-rational B-splines are a special case of
rational B-splines). Whereas Bézier curves evolve into only one parametric direction,
usually called s or u, NURBS surfaces evolve into two parametric directions, called s and
t or u and v.

By evaluating a NURBS curve at various values of the parameter, the curve can be
represented in cartesian two- or three-dimensional space. Likewise, by evaluating a
NURBS surface at various values of the two parameters, the surface can be represented in
cartesian space.

NURBS curves and surfaces are useful for a number of reasons:

 They are invariant under affine as well as perspective transformations: operations
like rotations and translations can be applied to NURBS curves and surfaces by
applying them to their control points.

 They offer one common mathematical form for both standard analytical shapes
(e.g., conics) and free-form shapes.

 They provide the flexibility to design a large variety of shapes.
 They reduce the memory consumption when storing shapes (compared to simpler

methods).
 They can be evaluated reasonably quickly by numerically stable and accurate

algorithms.

In the next sections, NURBS is discussed in one dimension (curves). It should be noted
that all of it can be generalized to two or even more dimensions.

Control points

The control points determine the shape of the curve. Typically, each point of the curve is
computed by taking a weighted sum of a number of control points. The weight of each

point varies according to the governing parameter. For a curve of degree d, the weight of
any control point is only nonzero in d+1 intervals of the parameter space. Within those
intervals, the weight changes according to a polynomial function (basis functions) of
degree d. At the boundaries of the intervals, the basis functions go smoothly to zero, the
smoothness being determined by the degree of the polynomial.

As an example, the basis function of degree one is a triangle function. It rises from zero
to one, then falls to zero again. While it rises, the basis function of the previous control
point falls. In that way, the curve interpolates between the two points, and the resulting
curve is a polygon, which is continuous, but not differentiable at the interval boundaries,
or knots. Higher degree polynomials have correspondingly more continuous derivatives.
Note that within the interval the polynomial nature of the basis functions and the linearity
of the construction make the curve perfectly smooth, so it is only at the knots that
discontinuity can arise.

The fact that a single control point only influences those intervals where it is active is a
highly desirable property, known as local support. In modelling, it allows the changing
of one part of a surface while keeping other parts equal.

Adding more control points allows better approximation to a given curve, although only a
certain class of curves can be represented exactly with a finite number of control points.
NURBS curves also feature a scalar weight for each control point. This allows for more
control over the shape of the curve without unduly raising the number of control points.
In particular, it adds conic sections like circles and ellipses to the set of curves that can be
represented exactly. The term rational in NURBS refers to these weights.

The control points can have any dimensionality. One-dimensional points just define a
scalar function of the parameter. These are typically used in image processing programs
to tune the brightness and color curves. Three-dimensional control points are used
abundantly in 3D modelling, where they are used in the everyday meaning of the word
'point', a location in 3D space. Multi-dimensional points might be used to control sets of
time-driven values, e.g. the different positional and rotational settings of a robot arm.
NURBS surfaces are just an application of this. Each control 'point' is actually a full
vector of control points, defining a curve. These curves share their degree and the number
of control points, and span one dimension of the parameter space. By interpolating these
control vectors over the other dimension of the parameter space, a continuous set of
curves is obtained, defining the surface.

The knot vector

The knot vector is a sequence of parameter values that determines where and how the
control points affect the NURBS curve. The number of knots is always equal to the
number of control points plus curve degree plus one. The knot vector divides the
parametric space in the intervals mentioned before, usually referred to as knot spans.
Each time the parameter value enters a new knot span, a new control point becomes

active, while an old control point is discarded. It follows that the values in the knot vector
should be in nondecreasing order, so (0, 0, 1, 2, 3, 3) is valid while (0, 0, 2, 1, 3, 3) is not.

Consecutive knots can have the same value. This then defines a knot span of zero length,
which implies that two control points are activated at the same time (and of course two
control points become deactivated). This has impact on continuity of the resulting curve
or its higher derivatives; for instance, it allows to create corners in an otherwise smooth
NURBS curve. A number of coinciding knots is sometimes referred to as a knot with a
certain multiplicity. Knots with multiplicity two or three are known as double or triple
knots. The multiplicity of a knot is limited to the degree of the curve; since a higher
multiplicity would split the curve into disjoint parts and it would leave control points
unused. For first-degree NURBS, each knot is paired with a control point.

The knot vector usually starts with a knot that has multiplicity equal to the order. This
makes sense, since this activates the control points that have influence on the first knot
span. Similarly, the knot vector usually ends with a knot of that multiplicity. Curves with
such knot vectors start and end in a control point.

The individual knot values are not meaningful by themselves; only the ratios of the
difference between the knot values matter. Hence, the knot vectors (0, 0, 1, 2, 3, 3) and
(0, 0, 2, 4, 6, 6) produce the same curve. The positions of the knot values influences the
mapping of parameter space to curve space. Rendering a NURBS curve is usually done
by stepping with a fixed stride through the parameter range. By changing the knot span
lengths, more sample points can be used in regions where the curvature is high. Another
use is in situations where the parameter value has some physical significance, for instance
if the parameter is time and the curve describes the motion of a robot arm. The knot span
lengths then translate into velocity and acceleration, which are essential to get right to
prevent damage to the robot arm or its environment. This flexibility in the mapping is
what the phrase non uniform in NURBS refers to.

Necessary only for internal calculations, knots are usually not helpful to the users of
modeling software. Therefore, many modeling applications do not make the knots
editable or even visible. It's usually possible to establish reasonable knot vectors by
looking at the variation in the control points. More recent versions of NURBS software
(e.g., Autodesk Maya and Rhinoceros 3D) allow for interactive editing of knot positions,
but this is significantly less intuitive than the editing of control points.

Order

The order of a NURBS curve defines the number of nearby control points that influence
any given point on the curve. The curve is represented mathematically by a polynomial of
degree one less than the order of the curve. Hence, second-order curves (which are
represented by linear polynomials) are called linear curves, third-order curves are called
quadratic curves, and fourth-order curves are called cubic curves. The number of control
points must be greater than or equal to the order of the curve.

In practice, cubic curves are the ones most commonly used. Fifth- and sixth-order curves
are sometimes useful, especially for obtaining continuous higher order derivatives, but
curves of higher orders are practically never used because they lead to internal numerical
problems and tend to require disproportionately large calculation times.

Construction of the basis functions

The basis functions used in NURBS curves are usually denoted as Ni,n(u), in which i
corresponds to the i-th control point, and n corresponds with the degree of the basis
function. The parameter dependence is frequently left out, so we can write Ni,n. The
definition of these basis functions is recursive in n. The degree-0 functions Ni,0 are
piecewise constant functions. They are one on the corresponding knot span and zero
everywhere else. Effectively, Ni,n is a linear interpolation of Ni,n − 1 and Ni + 1,n − 1. The
latter two functions are non-zero for n knot spans, overlapping for n − 1 knot spans. The
function Ni,n is computed as

From bottom to top: Linear basis functions N1,1 (blue) and N2,1 (green), their weight
functions f and g and the resulting quadratic basis function. The knots are 0, 1, 2 and 2.5

Ni,n = fi,nNi,n − 1 + gi + 1,nNi + 1,n − 1

fi rises linearly from zero to one on the interval where Ni,n − 1 is non-zero, while gi + 1 falls
from one to zero on the interval where Ni + 1,n − 1 is non-zero. As mentioned before, Ni,1 is
a triangular function, nonzero over two knot spans rising from zero to one on the first,
and falling to zero on the second knot span. Higher order basis functions are non-zero
over corresponding more knot spans and have correspondingly higher degree. If u is the
parameter, and ki is the i-th knot, we can write the functions f and g as

and

The functions f and g are positive when the corresponding lower order basis functions are
non-zero. By induction on n it follows that the basis functions are non-negative for all
values of n and u. This makes the computation of the basis functions numerically stable.

Again by induction, it can be proved that the sum of the basis functions for a particular
value of the parameter is unity. This is known as the partition of unity property of the
basis functions.

Linear basis functions

Quadratic basis functions

The figures show the linear and the quadratic basis functions for the knots {..., 0, 1, 2, 3,
4, 4.1, 5.1, 6.1, 7.1, ...}

One knot span is considerably shorter than the others. On that knot span, the peak in the
quadratic basis function is more distinct, reaching almost one. Conversely, the adjoining
basis functions fall to zero more quickly. In the geometrical interpretation, this means
that the curve approaches the corresponding control point closely. In case of a double
knot, the length of the knot span becomes zero and the peak reaches one exactly. The
basis function is no longer differentiable at that point. The curve will have a sharp corner
if the neighbour control points are not collinear.

General form of a NURBS curve

Using the definitions of the basis functions Ni,n from the previous paragraph, a NURBS
curve takes the following form :

In this, k is the number of control points and wi are the corresponding weights. The
denominator is a normalizing factor that evaluates to one if all weights are one. This can

be seen from the partition of unity property of the basis functions. It is customary to write
this as

in which the functions

are known as the rational basis functions.

Manipulating NURBS objects

A number of transformations can be applied to a NURBS object. For instance, if some
curve is defined using a certain degree and N control points, the same curve can be
expressed using the same degree and N+1 control points. In the process a number of
control points change position and a knot is inserted in the knot vector. These
manipulations are used extensively during interactive design. When adding a control
point, the shape of the curve should stay the same, forming the starting point for further
adjustments. A number of these operations are discussed below.

Knot insertion

As the term suggests, knot insertion inserts a knot into the knot vector. If the degree of
the curve is n, then n − 1 control points are replaced by n new ones. The shape of the
curve stays the same.

A knot can be inserted multiple times, up to the maximum multiplicity of the knot. This is
sometimes referred to as knot refinement and can be achieved by an algorithm that is
more efficient than repeated knot insertion.

Knot removal

Knot removal is the reverse of knot insertion. Its purpose is to remove knots and the
associated control points in order to get a more compact representation. Obviously, this is
not always possible while retaining the exact shape of the curve. In practice, a tolerance
in the accuracy is used to determine whether a knot can be removed. The process is used
to clean up after an interactive session in which control points may have been added
manually, or after importing a curve from a different representation, where a
straightforward conversion process leads to redundant control points.

Degree elevation

A NURBS curve of a particular degree can always be represented by a NURBS curve of
higher degree. This is frequently used when combining separate NURBS curves, e.g.
when creating a NURBS surface interpolating between a set of NURBS curves or when
unifying adjacent curves. In the process, the different curves should be brought to the
same degree, usually the maximum degree of the set of curves. The process is known as
degree elevation.

Curvature

The most important property in differential geometry is the curvature κ. It describes the
local properties (edges, corners, etc.) and relations between the first and second
derivative, and thus, the precise curve shape. Having determined the derivatives it is easy

to compute or approximated as the arclength from the second
derivate κ = | r''(so) | . The direct computation of the curvature κ with these equations is
the big advantage of parameterized curves against their polygonal representations.

Example: a circle

Non-rational splines or Bézier curves may approximate a circle, but they cannot represent
it exactly. Rational splines can represent any conic section, including the circle, exactly.
This representation is not unique, but one possibility appears below:

x y z weight

1 0 0 1

 0

0 1 0 1

− 0

−1 0 0 1

− − 0

0 −1 0 1

 − 0

1 0 0 1

The order is three, since a circle is a quadratic curve and the spline's order is one more
than the degree of its piecewise polynomial segments. The knot vector is

. The circle is composed of
four quarter circles, tied together with double knots. Although double knots in a third
order NURBS curve would normally result in loss of continuity in the first derivative, the

control points are positioned in such a way that the first derivative is continuous. (In fact,
the curve is infinitely differentiable everywhere, as it must be if it exactly represents a
circle.)

The curve represents a circle exactly, but it is not exactly parametrized in the circle's arc
length. This means, for example, that the point at t does not lie at (sin(t),cos(t)) (except
for the start, middle and end point of each quarter circle, since the representation is
symmetrical). This is obvious; the x coordinate of the circle would otherwise provide an
exact rational polynomial expression for cos(t), which is impossible. The circle does
make one full revolution as its parameter t goes from 0 to 2π, but this is only because the
knot vector was arbitrarily chosen as multiples of π / 2.

Chapter 7

Normal Mapping & Mipmap

Normal Mapping

Normal mapping used to re-detail simplified meshes.

In 3D computer graphics, normal mapping, or "Dot3 bump mapping", is a technique
used for faking the lighting of bumps and dents. It is used to add details without using
more polygons. A normal map is usually an RGB image that corresponds to the X, Y, and
Z coordinates of a surface normal from a more detailed version of the object. A common
use of this technique is to greatly enhance the appearance and details of a low polygon
model by generating a normal map from a high polygon model.

History

The idea of taking geometric details from a high polygon model was introduced in
"Fitting Smooth Surfaces to Dense Polygon Meshes" by Krishnamurthy and Levoy, Proc.
SIGGRAPH 1996, where this approach was used for creating displacement maps over
nurbs. In 1998, two papers were presented with key ideas for transferring details with
normal maps from high to low polygon meshes: "Appearance Preserving Simplification",
by Cohen et al. SIGGRAPH 1998, and "A general method for preserving attribute values
on simplified meshes" by Cignoni et al. IEEE Visualization '98. The former introduced
the idea of storing surface normals directly in a texture, rather than displacements, though
it required the low-detail model to be generated by a particular constrained simplification
algorithm. The latter presented a simpler approach that decouples the high and low
polygonal mesh and allows the recreation of any attributes of the high-detail model
(color, texture coordinates, displacements, etc.) in a way that is not dependent on how the
low-detail model was created. The combination of storing normals in a texture, with the
more general creation process is still used by most currently available tools.

How it works

To calculate the Lambertian (diffuse) lighting of a surface, the unit vector from the
shading point to the light source is dotted with the unit vector normal to that surface, and
the result is the intensity of the light on that surface. Imagine a polygonal model of a
sphere - you can only approximate the shape of the surface. By using a 3-channel bitmap
textured across the model, more detailed normal vector information can be encoded. Each
channel in the bitmap corresponds to a spatial dimension (X, Y and Z). These spatial
dimensions are relative to a constant coordinate system for object-space normal maps, or
to a smoothly varying coordinate system (based on the derivatives of position with
respect to texture coordinates) in the case of tangent-space normal maps. This adds much
more detail to the surface of a model, especially in conjunction with advanced lighting
techniques.

Calculating Tangent Space

In order to find the perturbation in the normal the tangent space must be correctly
calculated. Most often the normal is perturbed in a fragment shader after applying the
model and view matrices. Typically the geometry provides a normal and tangent. The
tangent is part of the tangent plane and can be transformed simply with the linear part of
the matrix (the upper 3x3). However, the normal needs to be transformed by the inverse
transpose. Most applications will want bitangent to match the transformed geometry (and
associated uv's). So instead of enforcing the bitanget to be normal to the tangent, it is
generally preferable to transform the bitangent just like the tangent. Let t be tangent, n be
normal, b be bitangent, M3x3 be linear part of model matrix, and V3x3 be the linear part of
the view matrix.

Normal mapping in video games

Interactive normal map rendering was originally only possible on PixelFlow, a parallel
rendering machine built at the University of North Carolina at Chapel Hill. It was later
possible to perform normal mapping on high-end SGI workstations using multi-pass
rendering and framebuffer operations or on low end PC hardware with some tricks using
paletted textures. However, with the advent of shaders in personal computers and game
consoles, normal mapping became widely used in proprietary commercial video games
starting in late 2003, and followed by open source games in later years. Normal
mapping's popularity for real-time rendering is due to its good quality to processing
requirements ratio versus other methods of producing similar effects. Much of this
efficiency is made possible by distance-indexed detail scaling, a technique which
selectively decreases the detail of the normal map of a given texture (cf. mipmapping),
meaning that more distant surfaces require less complex lighting simulation.

Basic normal mapping can be implemented in any hardware that supports palettized
textures. The first game console to have specialized normal mapping hardware was the
Sega Dreamcast. However, Microsoft's Xbox was the first console to widely use the
effect in retail games. Out of the sixth generation consoles, only the PlayStation 2's GPU
lacks built-in normal mapping support. Games for the Xbox 360 and the PlayStation 3
rely heavily on normal mapping and are beginning to implement parallax mapping. The
Nintendo 3DS has been shown to support normal mapping, as demonstrated by Resident
Evil: Revelations and Metal Gear Solid: Snake Eater.

Mipmap

In 3D computer graphics texture filtering, MIP maps (also mipmaps) are pre-calculated,
optimized collections of images that accompany a main texture, intended to increase
rendering speed and reduce aliasing artifacts. They are widely used in 3D computer
games, flight simulators and other 3D imaging systems. The technique is known as
mipmapping. The letters "MIP" in the name are an acronym of the Latin phrase multum
in parvo, meaning "much in a small space". Mipmaps need more space in memory. They
also form the basis of wavelet compression.

Origin

Mipmapping was invented by Lance Williams in 1983 and is described in his paper
Pyramidal parametrics. From the abstract: "This paper advances a 'pyramidal parametric'
prefiltering and sampling geometry which minimizes aliasing effects and assures

continuity within and between target images." The "pyramid" can be imagined as the set
of mipmaps stacked on top of each other.

How it works

An example of mipmap image storage: the principal image on the left is accompanied by
filtered copies of reduced size.

Each bitmap image of the mipmap set is a version of the main texture, but at a certain
reduced level of detail. Although the main texture would still be used when the view is
sufficient to render it in full detail, the renderer will switch to a suitable mipmap image
(or in fact, interpolate between the two nearest, if trilinear filtering is activated) when the
texture is viewed from a distance or at a small size. Rendering speed increases since the
number of texture pixels ("texels") being processed can be much lower than with simple
textures. Artifacts are reduced since the mipmap images are effectively already anti-
aliased, taking some of the burden off the real-time renderer. Scaling down and up is
made more efficient with mipmaps as well.

If the texture has a basic size of 256 by 256 pixels, then the associated mipmap set may
contain a series of 8 images, each one-fourth the total area of the previous one: 128×128
pixels, 64×64, 32×32, 16×16, 8×8, 4×4, 2×2, 1×1 (a single pixel). If, for example, a scene
is rendering this texture in a space of 40×40 pixels, then either a scaled up version of the
32×32 (without trilinear interpolation) or an interpolation of the 64×64 and the 32×32
mipmaps (with trilinear interpolation) would be used. The simplest way to generate these
textures is by successive averaging; however, more sophisticated algorithms (perhaps
based on signal processing and Fourier transforms) can also be used.

The increase in storage space required for all of these mipmaps is a third of the original
texture, because the sum of the areas 1/4 + 1/16 + 1/64 + 1/256 + · · · converges to 1/3. In
the case of an RGB image with three channels stored as separate planes, the total mipmap
can be visualized as fitting neatly into a square area twice as large as the dimensions of
the original image on each side (four times the original area - one square for each

channel, then increase subtotal that by a third). This is the inspiration for the tag "multum
in parvo".

In many instances, the filtering should not be uniform in each direction (it should be
anisotropic, as opposed to isotropic), and a compromise resolution is used. If a higher
resolution is used, the cache coherence goes down, and the aliasing is increased in one
direction, but the image tends to be clearer. If a lower resolution is used, the cache
coherence is improved, but the image is overly blurry, to the point where it becomes
difficult to identify.

To help with this problem, nonuniform mipmaps (also known as rip-maps) are sometimes
used. With a 16×16 base texture map, the rip-map resolutions would be 16×8, 16×4,
16×2, 16×1, 8×16, 8×8, 8×4, 8×2, 8×1, 4×16, 4×8, 4×4, 4×2, 4×1, 2×16, 2×8, 2×4, 2×2,
2×1, 1×16, 1×8, 1×4, 1×2 and 1×1.

A trade off : anisotropic mip-mapping

The unfortunate problem with this approach is that rip-maps require four times as much
memory as the base texture map, and so rip-maps have been very unpopular. Also for
1×4 and more extreme 4 maps each rotated by 45° would be needed and the real memory
requirement is growing more than linearly.

To reduce the memory requirement, and simultaneously give more resolutions to work
with, summed-area tables were conceived. However, this approach tends to exhibit poor
cache behavior. Also, a summed area table needs to have wider types to store the partial
sums than the word size used to store the texture. For these reasons, there isn't any
hardware that implements summed-area tables today.

A compromise has been reached today, called anisotropic mip-mapping. In the case
where an anisotropic filter is needed, a higher resolution mipmap is used, and several
texels are averaged in one direction to get more filtering in that direction. This has a
somewhat detrimental effect on the cache, but greatly improves image quality.

Chapter 8

Particle System & Painter's Algorithm

Particle System

A particle system used to simulate a fire, created in 3dengfx.

Ad-hoc particle system used to simulate a galaxy, created in 3dengfx.

A particle system used to simulate a bomb explosion, created in particleIllusion.

The term particle system refers to a computer graphics technique to simulate certain
fuzzy phenomena, which are otherwise very hard to reproduce with conventional
rendering techniques. Examples of such phenomena which are commonly replicated
using particle systems include fire, explosions, smoke, moving water, sparks, falling
leaves, clouds, fog, snow, dust, meteor tails, hair, fur, grass, or abstract visual effects like
glowing trails, magic spells, etc.

While in most cases particle systems are implemented in three dimensional graphics
systems, two dimensional particle systems may also be used under some circumstances.

Typical implementation

Typically a particle system's position and motion in 3D space are controlled by what is
referred to as an emitter. The emitter acts as the source of the particles, and its location
in 3D space determines where they are generated and whence they proceed. A regular 3D
mesh object, such as a cube or a plane, can be used as an emitter. The emitter has
attached to it a set of particle behavior parameters. These parameters can include the
spawning rate (how many particles are generated per unit of time), the particles' initial
velocity vector (the direction they are emitted upon creation), particle lifetime (the length
of time each individual particle exists before disappearing), particle color, and many
more. It is common for all or most of these parameters to be "fuzzy" — instead of a
precise numeric value, the artist specifies a central value and the degree of randomness
allowable on either side of the center (i.e. the average particle's lifetime might be 50
frames ±20%). When using a mesh object as an emitter, the initial velocity vector is often
set to be normal to the individual face(s) of the object, making the particles appear to
"spray" directly from each face.

A typical particle system's update loop (which is performed for each frame of animation)
can be separated into two distinct stages, the parameter update/simulation stage and the
rendering stage.

Simulation stage

During the simulation stage, the number of new particles that must be created is
calculated based on spawning rates and the interval between updates, and each of them is
spawned in a specific position in 3D space based on the emitter's position and the
spawning area specified. Each of the particle's parameters (i.e. velocity, color, etc.) is
initialized according to the emitter's parameters. At each update, all existing particles are
checked to see if they have exceeded their lifetime, in which case they are removed from
the simulation. Otherwise, the particles' position and other characteristics are advanced
based on some sort of physical simulation, which can be as simple as translating their
current position, or as complicated as performing physically-accurate trajectory
calculations which take into account external forces (gravity, friction, wind, etc.). It is
common to perform some sort of collision detection between particles and specified 3D
objects in the scene to make the particles bounce off of or otherwise interact with

obstacles in the environment. Collisions between particles are rarely used, as they are
computationally expensive and not really useful for most simulations.

Rendering stage

After the update is complete, each particle is rendered, usually in the form of a textured
billboarded quad (i.e. a quadrilateral that is always facing the viewer). However, this is
not necessary; a particle may be rendered as a single pixel in small resolution/limited
processing power environments. Particles can be rendered as Metaballs in off-line
rendering; isosurfaces computed from particle-metaballs make quite convincing liquids.
Finally, 3D mesh objects can "stand in" for the particles — a snowstorm might consist of
a single 3D snowflake mesh being duplicated and rotated to match the positions of
thousands or millions of particles.

Snowflakes versus hair

Particle systems can be either animated or static; that is, the lifetime of each particle can
either be distributed over time or rendered all at once. The consequence of this distinction
is the difference between the appearance of "snow" and the appearance of "hair."

The term "particle system" itself often brings to mind only the animated aspect, which is
commonly used to create moving particulate simulations — sparks, rain, fire, etc. In these
implementations, each frame of the animation contains each particle at a specific position
in its life cycle, and each particle occupies a single point position in space.

However, if the entire life cycle of the each particle is rendered simultaneously, the result
is static particles — strands of material that show the particles' overall trajectory, rather
than point particles. These strands can be used to simulate hair, fur, grass, and similar
materials. The strands can be controlled with the same velocity vectors, force fields,
spawning rates, and deflection parameters that animated particles obey. In addition, the
rendered thickness of the strands can be controlled and in some implementations may be
varied along the length of the strand. Different combinations of parameters can impart
stiffness, limpness, heaviness, bristliness, or any number of other properties. The strands
may also use texture mapping to vary the strands' color, length, or other properties across
the emitter surface.

A cube emitting 5000 animated particles, obeying a "gravitational" force in the negative
Y direction.

The same cube emitter rendered using static particles, or strands.

Artist-friendly particle system tools

Particle systems can be created and modified natively in many 3D modeling and
rendering packages including Lightwave, Houdini, Maya, XSI, 3D Studio Max and
Blender. These editing programs allow artists to have instant feedback on how a particle
system will look with properties and constraints that they specify. There is also plug-in
software available that provides enhanced particle effects; examples include AfterBurn
and RealFlow (for liquids). Compositing software such as Combustion or specialized,

particle-only software such as Particle Studio and particleIllusion can be used for the
creation of particle systems for film and video.

Developer-friendly particle system tools

Particle systems code that can be included in game engines, digital content creation
systems, and effects applications can be written from scratch or downloaded. One free
implementation is The Particle Systems API. Another for the XNA framework is the
Dynamic Particle System Framework. Havok provides multiple particle system APIs.
Their Havok FX API focuses especially on particle system effects. Ageia provides a
particle system and other game physics API that is used in many games, including Unreal
Engine 3 games. In February 2008, Ageia was bought by Nvidia.

Painter's Algorithm

The painter's algorithm, also known as a priority fill, is one of the simplest solutions to
the visibility problem in 3D computer graphics. When projecting a 3D scene onto a 2D
plane, it is necessary at some point to decide which polygons are visible, and which are
hidden.

The name "painter's algorithm" refers to the technique employed by many painters of
painting distant parts of a scene before parts which are nearer thereby covering some
areas of distant parts. The painter's algorithm sorts all the polygons in a scene by their
depth and then paints them in this order, farthest to closest. It will paint over the parts that
are normally not visible — thus solving the visibility problem — at the cost of having
painted redundant areas of distant objects.

The distant mountains are painted first, followed by the closer meadows; finally, the
closest objects in this scene, the trees, are painted.

Overlapping polygons can cause the algorithm to fail

The algorithm can fail in some cases, including cyclic overlap or piercing polygons. In
the case of cyclic overlap, as shown in the figure to the right, Polygons A, B, and C
overlap each other in such a way that it is impossible to determine which polygon is
above the others. In this case, the offending polygons must be cut to allow sorting.
Newell's algorithm, proposed in 1972, provides a method for cutting such polygons.
Numerous methods have also been proposed in the field of computational geometry.

The case of piercing polygons arises when one polygon intersects another. As with cyclic
overlap, this problem may be resolved by cutting the offending polygons.

In basic implementations, the painter's algorithm can be inefficient. It forces the system
to render each point on every polygon in the visible set, even if that polygon is occluded
in the finished scene. This means that, for detailed scenes, the painter's algorithm can
overly tax the computer hardware.

A reverse painter's algorithm is sometimes used, in which objects nearest to the viewer
are painted first — with the rule that paint must never be applied to parts of the image
that are already painted. In a computer graphic system, this can be very efficient, since it
is not necessary to calculate the colors (using lighting, texturing and such) for parts of the
more distant scene that are hidden by nearby objects. However, the reverse algorithm
suffers from many of the same problems as the standard version.

These and other flaws with the algorithm led to the development of Z-buffer techniques,
which can be viewed as a development of the painter's algorithm, by resolving depth
conflicts on a pixel-by-pixel basis, reducing the need for a depth-based rendering order.
Even in such systems, a variant of the painter's algorithm is sometimes employed. As Z-
buffer implementations generally rely on fixed-precision depth-buffer registers
implemented in hardware, there is scope for visibility problems due to rounding error.

These are overlaps or gaps at joins between polygons. To avoid this, some graphics
engine implementations "overrender", drawing the affected edges of both polygons in the
order given by painter's algorithm. This means that some pixels are actually drawn twice
(as in the full painters algorithm) but this happens on only small parts of the image and
has a negligible performance effect.

Chapter 9

Phong Shading

Phong shading refers to a set of techniques in 3D computer graphics. Phong shading
includes a model for the reflection of light from surfaces and a compatible method of
estimating pixel colors by interpolating surface normals across rasterized polygons.

The model of reflection may also be referred to as the Phong reflection model, Phong
illumination or Phong lighting. It may be called Phong shading in the context of pixel
shaders or other places where a lighting calculation can be referred to as "shading". The
interpolation method may also be called Phong interpolation, which is usually referred
to by "per-pixel lighting". Typically it is called "shading" when contrasted with other
interpolation methods such as Gouraud shading or flat shading. The Phong reflection
model may be used in conjunction with any of these interpolation methods.

History

These methods were developed by Bui Tuong Phong at the University of Utah, who
published them in his 1973 Ph.D. dissertation. Phong's shading methods were considered
radical at the time of their introduction, but have evolved into a baseline shading method
for many rendering applications. Phong's methods have proven popular due to their
generally parsimonious use of CPU time per rendered pixel.

Phong reflection model

Phong reflection is an empirical model of local illumination. It describes the way a
surface reflects light as a combination of the diffuse reflection of rough surfaces with the
specular reflection of shiny surfaces. It is based on Bui Tuong Phong's informal
observation that shiny surfaces have small intense specular highlights, while dull surfaces
have large highlights that fall off more gradually. The reflection model also includes an
ambient term to account for the small amount of light that is scattered about the entire
scene.

Visual illustration of the Phong equation: here the light is white, the ambient and diffuse
colors are both blue, and the specular color is white, reflecting a small part of the light
hitting the surface, but only in very narrow highlights. The intensity of the diffuse
component varies with the direction of the surface, and the ambient component is
uniform (independent of direction).

For each light source in the scene, we define the components is and id as the intensities
(often as RGB values) of the specular and diffuse components of the light sources
respectively. A single term ia controls the ambient lighting; it is sometimes computed as a
sum of contributions from all light sources.

For each material in the scene, we define:

ks: specular reflection constant, the ratio of reflection of the specular term of
incoming light
kd: diffuse reflection constant, the ratio of reflection of the diffuse term of
incoming light (Lambertian reflectance)
ka: ambient reflection constant, the ratio of reflection of the ambient term present
in all points in the scene rendered
α: is a shininess constant for this material, which is larger for surfaces that are
smoother and more mirror-like. When this constant is large the specular highlight
is small.

We further define lights as the set of all light sources, L as the direction vector from the
point on the surface toward each light source, N as the normal at this point on the surface,
R as the direction that a perfectly reflected ray of light would take from this point on the
surface, and V as the direction pointing towards the viewer (such as a virtual camera).

Then the Phong reflection model provides an equation for computing the shading value
of each surface point Ip:

where the direction vector Rm is calculated as the reflection of − Lm (the direction from
the light source to the surface) on the surface using a Householder transformation:

The diffuse term is not affected by the viewer direction (V). The specular term is large
only when the viewer direction (V) is aligned with the reflection direction R. Their
alignment is measured by the α power of the cosine of the angle between them. The
cosine of the angle between the normalized vectors R and V is equal to their dot product.
When α is large, in the case of a nearly mirror-like reflection, the specular highlight will
be small, because any viewpoint not aligned with the reflection will have a cosine less
than one which rapidly approaches zero when raised to a high power.

When we have color representations as RGB values, this equation will typically be
calculated separately for R, G and B intensities.

Although the above formulation is the common way of presenting the Phong model, each
term should only be included if the term's dot product is positive.

Computational approximations

When implementing the Phong reflection model in graphics software, there are a number
of methods for approximating the model, rather than implementing the exact formulas,
which can speed up the calculation.

If α is large, the calculation of the power term may be computationally expensive since it
requires a large number of multiplications; it can be approximated by realizing that

for a sufficiently large integer γ (typically 4 will be enough), where

which can be approximated as , and

is a real number (not necessarily an integer). This method substitutes a few
multiplications for a variable exponentiation, and if using the difference vector

instead of the dot product doesn't require as accurate a normalization of the
interpolated normal vector in computing the reflection vector.

Inverse Phong reflection model

The Phong shading reflection model is an approximation of shading of objects in real life.
This means that the Phong equation can relate the shading seen in a photograph with the
surface normals of the visible object. Inverse refers to the wish to estimate the surface
normals given a rendered image, natural or computer-made.

The Phong reflection model contains many parameters, such as the surface diffuse
reflection parameter (albedo) which may vary within the object. Thus the normals of an

object in a photograph can only be determined, by introducing additive information such
as the number of lights, light directions and reflection parameters.

For example we have a cylindrical object for instance a finger and like to calculate the
normal N = [Nx,Nz] on a line on the object. We assume only one light, no specular
reflection, and uniform known (approximated) reflection parameters. We can then
simplify the Phong equation to:

With Ca a constant equal to the ambient light and Cd a constant equal to the diffusion
reflection. We can re-write the equation to:

Which can be rewritten for a line through the cylindrical object as:

(Ip − Ca) / Cd = LxNx + LzNz

For instance if the light direction is 45 degrees above the object L = [0.71,0.71] we get
two equations with two unknowns.

(Ip − Ca) / Cd = 0.71Nx + 0.71Nz

Because of the powers of two in the equation there are two possible solutions for the
normal direction. Thus some prior information of the geometry is needed to define the
correct normal direction. The normals are directly related to angles of inclination of the
line on the object surface. Thus the normals allow the calculation of the relative surface
heights of the line on the object using a line integral, if we assume a continuous surface.

If the object is not cylindrical, we have three unknown normal values N = [Nx,Ny,Nz].
Then the two equations still allow the normal to rotate around the view vector, thus
additional constraints are needed from prior geometric information. For instance in face
recognition those geometric constraints can be obtained using principal component
analysis (PCA) on a database of depth-maps of faces, allowing only surface normals
solutions which are found in a normal population.

Phong interpolation

Phong shading interpolation example

Phong shading improves upon Gouraud shading and provides a better approximation of
the shading of a smooth surface. Phong shading assumes a smoothly varying surface
normal vector. The Phong interpolation method works better than Gouraud shading when
applied to a reflection model that has small specular highlights such as the Phong
reflection model.

The most serious problem with Gouraud shading occurs when specular highlights are
found in the middle of a large polygon. Since these specular highlights are absent from
the polygon's vertices and Gouraud shading interpolates based on the vertex colors, the
specular highlight will be missing from the polygon's interior. This problem is fixed by
Phong shading.

Unlike Gouraud shading, which interpolates colors across polygons, in Phong shading a
normal vector is linearly interpolated across the surface of the polygon from the
polygon's vertex normals. The surface normal is interpolated and normalized at each
pixel and then used in the Phong reflection model to obtain the final pixel color. Phong
shading is more computationally expensive than Gouraud shading since the reflection
model must be computed at each pixel instead of at each vertex.

In some modern hardware, variants of this algorithm are implemented using pixel or
fragment shaders. This can be accomplished by coding normal vectors as secondary
colors for each polygon, have the rasterizer use Gouraud shading to interpolate them and
interpret them appropriately in the pixel or fragment shader to calculate the light for each
pixel based on this normal information.

Chapter 10

Path Tracing

A simple scene showing the soft phenomena simulated with path tracing.

Path tracing is a computer graphics rendering technique that attempts to simulate the
physical behaviour of light as closely as possible. It is a generalisation of conventional
ray tracing, tracing rays from the virtual camera through several bounces on or through
objects. The image quality provided by path tracing is usually superior to that of images

produced using conventional rendering methods at the cost of much greater computation
requirements.

Path tracing naturally simulates many effects that have to be specifically added to other
methods (ray tracing or scanline rendering), such as soft shadows, depth of field, motion
blur, caustics, ambient occlusion, and indirect lighting. Implementation of a renderer
including these effects is correspondingly simpler.

Due to its accuracy and unbiased nature, path tracing is used to generate reference images
when testing the quality of other rendering algorithms. In order to get high quality images
from path tracing, a large number of rays must be traced to avoid visible artifacts in the
form of noise.

History

The rendering equation and its use in computer graphics was presented by James Kajiya
in 1986. This presentation contained what was probably the first description of the path
tracing algorithm. A decade later, Lafortune suggested many refinements, including
bidirectional path tracing.

Metropolis light transport, a method of perturbing previously found paths in order to
increase performance for difficult scenes, was introduced in 1997 by Eric Veach and
Leonidas J. Guibas.

More recently, computers and GPUs have become powerful enough to render images
more quickly, causing more widespread interest in path tracing algorithms. Tim Purcell
first presented a global illumination algorithm running on a GPU in 2002. In 2009,
Vladimir Koylazov demonstrated the first commercial implementation of a path tracer
running on a GPU, and other implementations have followed. This was aided by the
maturing of GPGPU programming toolkits such as CUDA and OpenCL.

Description

In the real world, many small amounts of light are emitted from light sources, and travel
in straight lines (rays) from object to object, changing colour and intensity, until they are
absorbed (possibly by an eye or camera). This process is simulated by path tracing,
except that the paths are traced backwards, from the camera to the light. The inefficiency
arises in the random nature of the bounces from many surfaces, as it is usually quite
unlikely that a path will intersect a light. As a result, most traced paths do not contribute
to the final image.

This behaviour is described mathematically by the rendering equation, which is the
equation that path tracing algorithms try to solve.

Path tracing is not simply ray tracing with infinite recursion depth. In conventional ray
tracing, lights are sampled directly when a diffuse surface is hit by a ray. In path tracing,

a new ray is randomly generated within the hemisphere of the object and then traced until
it hits a light — possibly never. This type of path can hit many diffuse surfaces before
interacting with a light.

A simple path tracing pseudocode might look something like this:

 Color TracePath(Ray r,depth) {
 if(depth == MaxDepth)
 return Black; // bounced enough times

 r.FindNearestObject();
 if(r.hitSomething == false)
 return Black; // nothing was hit

 Material m = r.thingHit->material;
 Color emittance = m.emittance;

 // pick a random direction from here and keep going
 Ray newRay;
 newRay.origin = r.pointWhereObjWasHit;
 newRay.direction =
RandomUnitVectorInHemisphereOf(r.normalWhereObjWasHit);
 float cos_omega = DotProduct(newRay.direction,
r.normalWhereObjWasHit);

 Color BDRF = m.reflectance*cos_omega;
 Color reflected = TracePath(newRay,depth+1);

 return emittance + (BDRF * cos_omega * reflected);
 }

In the above example if every surface of a closed space emitted and reflected (0.5,0.5,0.5)
then every pixel in the image would be white.

Bidirectional path tracing

In order to accelerate the convergence of images, bidirectional algorithms trace paths in
both directions. In the forward direction, rays are traced from light sources until they are
too faint to be seen or strike the camera. In the reverse direction (the usual one), rays are
traced from the camera until they strike a light or too many bounces ("depth") have
occurred. This approach normally results in an image that converges much more quickly
than using only one direction.

Veach and Guibas give a more accurate description:

These methods generate one subpath starting at a light source and another starting at the
lens, then they consider all the paths obtained by joining every prefix of one subpath to
every suffix of the other. This leads to a family of different importance sampling
techniques for paths, which are then combined to minimize variance.

Performance

A path tracer continuously samples pixels of an image. The image starts to become
recognisable after only a few samples per pixel, perhaps 100. However, for the image to
"converge" and reduce noise to acceptable levels usually takes around 5000 samples for
most images, and many more for pathological cases. This can take hours or days
depending on scene complexity and hardware and software performance. Newer GPU
implementations are promising from 1-10 million samples per second on modern
hardware, producing acceptably noise-free images in seconds or minutes. Noise is
particularly a problem for animations, giving them a normally-unwanted "film-grain"
quality of random speckling.

Metropolis light transport obtains more important samples first, by slightly modifying
previously-traced successful paths. This can result in a lower-noise image with fewer
samples.

Renderer performance is quite difficult to measure fairly. One approach is to measure
"Samples per second", or the number of paths that can be traced and added to the image
each second. This varies considerably between scenes and also depends on the "path
depth", or how many times a ray is allowed to bounce before it is abandoned. It also
depends heavily on the hardware used. Finally, one renderer may generate many low
quality samples, while another may converge faster using fewer high-quality samples.

Scattering distribution functions

Scattering distribution functions

The reflective properties (amount, direction and colour) of surfaces are modelled using
BRDFs. The equivalent for transmitted light (light that goes through the object) are
BTDFs. A path tracer can take full advantage of complex, carefully modelled or
measured distribution functions, which controls the appearance ("material", "texture" or
"shading" in computer graphics terms) of an object.

Chapter 11

Photon Mapping

In computer graphics, photon mapping is a two-pass global illumination algorithm
developed by Henrik Wann Jensen that solves the rendering equation. Rays from the light
source and rays from the camera are traced independently until some termination
criterion is met, then they are connected in a second step to produce a radiance value. It is
used to realistically simulate the interaction of light with different objects. Specifically, it
is capable of simulating the refraction of light through a transparent substance such as
glass or water, diffuse interreflection between illuminated objects, the subsurface
scattering of light in translucent materials, and some of the effects caused by particulate
matter such as smoke or water vapor. It can also be extended to more accurate
simulations of light such as spectral rendering.

Unlike path tracing, bidirectional path tracing and Metropolis light transport, photon
mapping is a "biased" rendering algorithm, which means that averaging many renders
using this method does not converge to a correct solution to the rendering equation.
However, since it is a consistent method, a correct solution can be achieved by increasing
the number of photons.

Effects

Caustics

A model of a wine glass ray traced with photon mapping to show caustics.

Light refracted or reflected causes patterns called caustics, usually visible as concentrated
patches of light on nearby surfaces. For example, as light rays pass through a wine glass
sitting on a table, they are refracted and patterns of light are visible on the table. Photon
mapping can trace the paths of individual photons to model where these concentrated
patches of light will appear.

Diffuse interreflection

Diffuse interreflection is apparent when light from one diffuse object is reflected onto
another. Photon mapping is particularly adept at handling this effect because the
algorithm reflects photons from one surface to another based on that surface's
bidirectional reflectance distribution function (BRDF), and thus light from one object
striking another is a natural result of the method. Diffuse interreflection was first modeled
using radiosity solutions. Photon mapping differs though in that it separates the light
transport from the nature of the geometry in the scene. Color bleed is an example of
diffuse interreflection.

Subsurface scattering

Subsurface scattering is the effect evident when light enters a material and is scattered
before being absorbed or reflected in a different direction. Subsurface scattering can
accurately be modeled using photon mapping. This was the original way Jensen
implemented it; however, the method becomes slow for highly scattering materials, and
bidirectional surface scattering reflectance distribution functions (BSSRDFs) are more
efficient in these situations.

Usage

Construction of the photon map (1st pass)

With photon mapping, light packets called photons are sent out into the scene from the
light sources. Whenever a photon intersects with a surface, the intersection point and
incoming direction are stored in a cache called the photon map. Typically, two photon
maps are created for a scene: one especially for caustics and a global one for other light.
After intersecting the surface, a probability for either reflecting, absorbing, or
transmitting/refracting is given by the material. A Monte Carlo method called Russian
roulette is used to choose one of these actions. If the photon is absorbed, no new direction
is given, and tracing for that photon ends. If the photon reflects, the surface's BRDF is
used to determine a new direction. Finally, if the photon is transmitting, a different
function for its direction is given depending upon the nature of the transmission.

Once the photon map is constructed (or during construction), it is typically arranged in a
manner that is optimal for the k-nearest neighbor algorithm, as photon look-up time
depends on the spatial distribution of the photons. Jensen advocates the usage of kd-trees.
The photon map is then stored on disk or in memory for later usage.

Rendering (2nd pass)

In this step of the algorithm, the photon map created in the first pass is used to estimate
the radiance of every pixel of the output image. For each pixel, the scene is ray traced
until the closest surface of intersection is found.

At this point, the rendering equation is used to calculate the surface radiance leaving the
point of intersection in the direction of the ray that struck it. To facilitate efficiency, the
equation is decomposed into four separate factors: direct illumination, specular reflection,
caustics, and soft indirect illumination.

For an accurate estimate of direct illumination, a ray is traced from the point of
intersection to each light source. As long as a ray does not intersect another object, the
light source is used to calculate the direct illumination. For an approximate estimate of
indirect illumination, the photon map is used to calculate the radiance contribution.

Specular reflection can be, in most cases, calculated using ray tracing procedures (as it
handles reflections well).

The contribution to the surface radiance from caustics is calculated using the caustics
photon map directly. The number of photons in this map must be sufficiently large, as the
map is the only source for caustics information in the scene.

For soft indirect illumination, radiance is calculated using the photon map directly. This
contribution, however, does not need to be as accurate as the caustics contribution and
thus uses the global photon map.

Calculating radiance using the photon map

In order to calculate surface radiance at an intersection point, one of the cached photon
maps is used. The steps are:

1. Gather the N nearest photons using the nearest neighbor search function on the
photon map.

2. Let S be the sphere that contains these N photons.
3. For each photon, divide the amount of flux (real photons) that the photon

represents by the area of S and multiply by the BRDF applied to that photon.
4. The sum of those results for each photon represents total surface radiance returned

by the surface intersection in the direction of the ray that struck it.

Optimizations

 To avoid emitting unneeded photons, the initial direction of the outgoing photons
is often constrained. Instead of simply sending out photons in random directions,
they are sent in the direction of a known object that is a desired photon
manipulator to either focus or diffuse the light. There are many other refinements
that can be made to the algorithm: for example, choosing the number of photons
to send, and where and in what pattern to send them. It would seem that emitting
more photons in a specific direction would cause a higher density of photons to be
stored in the photon map around the position where the photons hit, and thus
measuring this density would give an inaccurate value for irradiance. This is true;
however, the algorithm used to compute radiance does not depend on irradiance
estimates.

 For soft indirect illumination, if the surface is Lambertian, then a technique
known as irradiance caching may be used to interpolate values from previous
calculations.

 To avoid unnecessary collision testing in direct illumination, shadow photons can
be used. During the photon mapping process, when a photon strikes a surface, in
addition to the usual operations performed, a shadow photon is emitted in the
same direction the original photon came from that goes all the way through the

object. The next object it collides with causes a shadow photon to be stored in the
photon map. Then during the direct illumination calculation, instead of sending
out a ray from the surface to the light that tests collisions with objects, the photon
map is queried for shadow photons. If none are present, then the object has a clear
line of sight to the light source and additional calculations can be avoided.

 To optimize image quality, particularly of caustics, Jensen recommends use of a
cone filter. Essentially, the filter gives weight to photons' contributions to
radiance depending on how far they are from ray-surface intersections. This can
produce sharper images.

 Image space photon mapping achieves real-time performance by computing the
first and last scattering using a GPU rasterizer.

Variations

 Although photon mapping was designed to work primarily with ray tracers, it can
also be extended for use with scanline renderers.

Chapter 12

3D Projection

3D projection is any method of mapping three-dimensional points to a two-dimensional
plane. As most current methods for displaying graphical data are based on planar two-
dimensional media, the use of this type of projection is widespread, especially in
computer graphics, engineering and drafting.

Orthographic projection

When the human eye looks at a scene, objects in the distance appear smaller than objects
close by. Orthographic projection ignores this effect to allow the creation of to-scale
drawings for construction and engineering.

Orthographic projections are a small set of transforms often used to show profile, detail
or precise measurements of a three dimensional object. Common names for orthographic
projections include plane, cross-section, bird's-eye, and elevation.

If the normal of the viewing plane (the camera direction) is parallel to one of the 3D axes,
the mathematical transformation is as follows; To project the 3D point ax, ay, az onto the
2D point bx, by using an orthographic projection parallel to the y axis (profile view), the
following equations can be used:

bx = sxax + cx
by = szaz + cz

where the vector s is an arbitrary scale factor, and c is an arbitrary offset. These constants
are optional, and can be used to properly align the viewport. Using matrix multiplication,
the equations become:

.

While orthographically projected images represent the three dimensional nature of the
object projected, they do not represent the object as it would be recorded
photographically or perceived by a viewer observing it directly. In particular, parallel
lengths at all points in an orthographically projected image are of the same scale
regardless of whether they are far away or near to the virtual viewer. As a result, lengths
near to the viewer are not foreshortened as they would be in a perspective projection.

Perspective projection

When the human eye looks at a scene, objects in the distance appear smaller than objects
close by - this is known as perspective. While orthographic projection ignores this effect
to allow accurate measurements, perspective definition shows distant objects as smaller
to provide additional realism.

The perspective projection requires greater definition. A conceptual aid to understanding
the mechanics of this projection involves treating the 2D projection as being viewed
through a camera viewfinder. The camera's position, orientation, and field of view control
the behavior of the projection transformation. The following variables are defined to
describe this transformation:

 - the 3D position of a point A that is to be projected.
 - the 3D position of a point C representing the camera.

 - The orientation of the camera (represented, for instance, by Tait–Bryan
angles).

 - the viewer's position relative to the display surface.

Which results in:

 - the 2D projection of .

When and the 3D vector is projected

to the 2D vector .

Otherwise, to compute we first define a vector as the position of point A with
respect to a coordinate system defined by the camera, with origin in C and rotated by

with respect to the initial coordinate system. This is achieved by subtracting from
and then applying a rotation by to the result. This transformation is often called a

camera transform, and can be expressed as follows, expressing the rotation in terms of
rotations about the x, y, and z axes (these calculations assume that the axes are ordered as
a left-handed system of axes):

This representation corresponds to rotating by three Euler angles (more properly, Tait–
Bryan angles), using the xyz convention, which can be interpreted either as "rotate about
the extrinsic axes (axes of the scene) in the order z, y, x (reading right-to-left)" or "rotate
about the intrinsic axes (axes of the camera) in the order x, y, z) (reading left-to-right)".

Note that if the camera is not rotated (), then the matrices drop out (as
identities), and this reduces to simply a shift:

Alternatively, without using matrices, (note that the signs of angles are inconsistent with
matrix form):

This transformed point can then be projected onto the 2D plane using the formula (here,
x/y is used as the projection plane, literature also may use x/z):

Or, in matrix form using homogeneous coordinates, the system

in conjunction with an argument using similar triangles, leads to division by the
homogeneous coordinate, giving

The distance of the viewer from the display surface, , directly relates to the field of

view, where is the viewed angle. (Note: This assumes that you
map the points (-1,-1) and (1,1) to the corners of your viewing surface)

The above equations can also be rewritten as:

In which is the display size, is the recording surface size (CCD or film), is the
distance from the recording surface to the aperture, and is the distance from the point
to the aperture.

Subsequent clipping and scaling operations may be necessary to map the 2D plane onto
any particular display media.

Diagram

To determine which screen x-coordinate corresponds to a point at Ax,Az multiply the
point coordinates by:

the same works for the screen y-coordinate:

(where Ax and Ay are coordinates occupied by the object before the perspective
transform)

Chapter 13

Radiosity (3D Computer Graphics)

Screenshot of scene rendered with RRV (simple implementation of radiosity renderer
based on OpenGL) 79th iteration.

Radiosity is a global illumination algorithm used in 3D computer graphics rendering.
Radiosity is an application of the finite element method to solving the rendering equation
for scenes with purely diffuse surfaces. Unlike Monte Carlo algorithms (such as path
tracing) which handle all types of light paths, typical radiosity methods only account for
paths which leave a light source and are reflected diffusely some number of times
(possibly zero) before hitting the eye. Such paths are represented as "LD*E". Radiosity
calculations are viewpoint independent which increases the computations involved, but
makes them useful for all viewpoints.

Radiosity methods were first developed in about 1950 in the engineering field of heat
transfer. They were later refined specifically for application to the problem of rendering
computer graphics in 1984 by researchers at Cornell University.

Notable commercial radiosity engines are Lightscape (now incorporated into the
Autodesk 3D Studio Max internal render engine), form•Z RenderZone Plus by
AutoDesSys, Inc.), and ElAS (Electric Image Animation System).

Visual characteristics

Difference between standard direct illumination and radiosity

The inclusion of radiosity calculations in the rendering process often lends an added
element of realism to the finished scene, because of the way it mimics real-world
phenomena. Consider a simple room scene.

The image on the left was rendered with a typical direct illumination renderer. There
are three types of lighting in this scene which have been specifically chosen and placed
by the artist in an attempt to create realistic lighting: spot lighting with shadows (placed
outside the window to create the light shining on the floor), ambient lighting (without
which any part of the room not lit directly by a light source would be totally dark), and
omnidirectional lighting without shadows (to reduce the flatness of the ambient
lighting).

The image on the right was rendered using a radiosity algorithm. There is only one
source of light: an image of the sky placed outside the window. The difference is
marked. The room glows with light. Soft shadows are visible on the floor, and subtle
lighting effects are noticeable around the room. Furthermore, the red color from the
carpet has bled onto the grey walls, giving them a slightly warm appearance. None of
these effects were specifically chosen or designed by the artist.

Overview of the radiosity algorithm

The surfaces of the scene to be rendered are each divided up into one or more smaller
surfaces (patches). A view factor is computed for each pair of patches. View factors (also
known as form factors) are coefficients describing how well the patches can see each
other. Patches that are far away from each other, or oriented at oblique angles relative to

one another, will have smaller view factors. If other patches are in the way, the view
factor will be reduced or zero, depending on whether the occlusion is partial or total.

The view factors are used as coefficients in a linearized form of the rendering equation,
which yields a linear system of equations. Solving this system yields the radiosity, or
brightness, of each patch, taking into account diffuse interreflections and soft shadows.

Progressive radiosity solves the system iteratively in such a way that after each iteration
we have intermediate radiosity values for the patch. These intermediate values
correspond to bounce levels. That is, after one iteration, we know how the scene looks
after one light bounce, after two passes, two bounces, and so forth. Progressive radiosity
is useful for getting an interactive preview of the scene. Also, the user can stop the
iterations once the image looks good enough, rather than wait for the computation to
numerically converge.

As the algorithm iterates, light can be seen to flow into the scene, as multiple bounces are
computed. Individual patches are visible as squares on the walls and floor.

Another common method for solving the radiosity equation is "shooting radiosity," which
iteratively solves the radiosity equation by "shooting" light from the patch with the most
error at each step. After the first pass, only those patches which are in direct line of sight
of a light-emitting patch will be illuminated. After the second pass, more patches will
become illuminated as the light begins to bounce around the scene. The scene continues
to grow brighter and eventually reaches a steady state.

Mathematical formulation

The basic radiosity method has its basis in the theory of thermal radiation, since radiosity
relies on computing the amount of light energy transferred among surfaces. In order to
simplify computations, the method assumes that all scattering is perfectly diffuse.
Surfaces are typically discretized into quadrilateral or triangular elements over which a
piecewise polynomial function is defined.

After this breakdown, the amount of light energy transfer can be computed by using the
known reflectivity of the reflecting patch, combined with the view factor of the two
patches. This dimensionless quantity is computed from the geometric orientation of two

patches, and can be thought of as the fraction of the total possible emitting area of the
first patch which is covered by the second patch.

More correctly, radiosity is the energy leaving the patch surface per discrete time interval
and is the combination of emitted and reflected energy:

where:

 Bi is the radiosity of patch i.
 Ei is emitted energy.
 Ri is the reflectivity of the patch, giving reflected energy by multiplying by the

incident energy (the energy which arrives from other patches).

 All j () in the rendered environment are integrated for BjFji dAj, to
determine the energy leaving each patch j that arrives at patch i.

 Fij is the constant-valued view factor for the radiation leaving i and hitting patch j.

The reciprocity:

gives:

For ease of use the integral is replaced and uniform radiosity is assumed over the patch,
creating the simpler:

This equation can then be applied to each patch. The equation is monochromatic, so color
radiosity rendering requires calculation for each of the required colors.

The view factor Fji can be calculated in a number of ways. Early methods used a
hemicube (an imaginary cube centered upon the first surface to which the second surface
was projected, devised by Cohen and Greenberg in 1985) to approximate the form factor,
which also solved the intervening patch problem. This is quite computationally
expensive, because ideally form factors must be derived for every possible pair of
patches, leading to a quadratic increase in computation with added geometry. New
methods include adaptive integration

Reducing computation time

Although in its basic form radiosity is assumed to have a quadratic increase in
computation time with added geometry (surfaces and patches), this need not be the case.
The radiosity problem can be rephrased as a problem of rendering a texture mapped
scene. In this case, the computation time increases only linearly with the number of
patches (ignoring complex issues like cache use). Using a binary space partitioning tree
can massively reduce the amount of time spent determining which patches are completely
hidden from others in complex scenes.

Following the commercial enthusiasm for radiosity-enhanced imagery, but prior to the
standardization of rapid radiosity calculation, many architects and graphic artists used a
technique referred to loosely as false radiosity. By darkening areas of texture maps
corresponding to corners, joints and recesses, and applying them via self-illumination or
diffuse mapping, a radiosity-like effect of patch interaction could be created with a
standard scanline renderer (cf. ambient occlusion).

Since radiosity can now be computed more effectively using texture mapping algorithms,
it lends itself to acceleration using standard graphics acceleration hardware, widely
available for all types of computers.

Advantages

A modern render of the iconic Utah teapot. Radiosity was used for all diffuse
illumination in this scene.

One of the advantages of the Radiosity algorithm is that it is relatively simple to explain
and implement. This makes it a useful algorithm for teaching students about global
illumination algorithms. A typical direct illumination renderer already contains nearly all
of the algorithms (perspective transformations, texture mapping, hidden surface removal)
required to implement radiosity. A strong grasp of mathematics is not required to
understand or implement this algorithm.

Limitations

Typical radiosity methods only account for light paths of the form LD*E, i.e., paths
which start at a light source and make multiple diffuse bounces before reaching the eye.
Although there are several approaches to integrating other illumination effects such as
specular and glossy reflections, radiosity-based methods are generally not used to solve
the complete rendering equation.

Basic radiosity also has trouble resolving sudden changes in visibility (e.g., hard-edged
shadows) because coarse, regular discretization into piecewise constant elements
corresponds to a low-pass box filter of the spatial domain. Discontinuity meshing uses
knowledge of visibility events to generate a more intelligent discretization.

Confusion about terminology

Radiosity was perhaps the first rendering algorithm in widespread use which accounted
for diffuse indirect lighting. Earlier rendering algorithms, such as Whitted-style ray
tracing were capable of computing effects such as reflections, refractions, and shadows,
but despite being highly global phenomena, these effects were not commonly referred to
as "global illumination." As a consequence, the term "global illumination" became
confused with "diffuse interreflection," and "Radiosity" became confused with "global
illumination" in popular parlance. However, the three are distinct concepts.

The radiosity method in the current computer graphics context derives from (and is
fundamentally the same as) the radiosity method in heat transfer. In this context radiosity
is the total radiative flux (both reflected and re-radiated) leaving a surface, also
sometimes known as radiant exitance. Calculation of Radiosity rather than surface
temperatures is a key aspect of the radiosity method that permits linear matrix methods to
be applied to the problem.

Chapter 14

Reflection Mapping & Reflection
(Computer Graphics)

Reflection Mapping

An example of reflection mapping.

In computer graphics, environment mapping, or reflection mapping, is an efficient
Image-based lighting technique for approximating the appearance of a reflective surface
by means of a precomputed texture image. The texture is used to store the image of the
distant environment surrounding the rendered object.

Several ways of storing the surrounding environment are employed. The first technique
was sphere mapping, in which a single texture contains the image of the surroundings as
reflected on a mirror ball. It has been almost entirely surpassed by cube mapping, in
which the environment is projected onto the six faces of a cube and stored as six square
textures or unfolded into six square regions of a single texture. Other projections that
have some superior mathematical or computational properties include the paraboloid
mapping, the pyramid mapping, the octahedron mapping, and the HEALPix
mapping.

The reflection mapping approach is more efficient than the classical ray tracing approach
of computing the exact reflection by tracing a ray and following its optical path. The
reflection color used in the shading computation at a pixel is determined by calculating
the reflection vector at the point on the object and mapping it to the texel in the
environment map. This technique often produces results that are superficially similar to
those generated by raytracing, but is less computationally expensive since the radiance
value of the reflection comes from calculating the angles of incidence and reflection,
followed by a texture lookup, rather than followed by tracing a ray against the scene
geometry and computing the radiance of the ray, simplifying the GPU workload.

However in most circumstances a mapped reflection is only an approximation of the real
reflection. Environment mapping relies on two assumptions that are seldom satisfied:

1) All radiance incident upon the object being shaded comes from an infinite distance.
When this is not the case the reflection of nearby geometry appears in the wrong place on
the reflected object. When this is the case, no parallax is seen in the reflection.

2) The object being shaded is convex, such that it contains no self-interreflections. When
this is not the case the object does not appear in the reflection; only the environment
does.

Reflection mapping is also a traditional Image-based lighting technique for creating
reflections of real-world backgrounds on synthetic objects.

Environment mapping is generally the fastest method of rendering a reflective surface.
To further increase the speed of rendering, the renderer may calculate the position of the
reflected ray at each vertex. Then, the position is interpolated across polygons to which
the vertex is attached. This eliminates the need for recalculating every pixel's reflection
direction.

If normal mapping is used, each polygon has many face normals (the direction a given
point on a polygon is facing), which can be used in tandem with an environment map to
produce a more realistic reflection. In this case, the angle of reflection at a given point on
a polygon will take the normal map into consideration. This technique is used to make an
otherwise flat surface appear textured, for example corrugated metal, or brushed
aluminium.

Types of reflection mapping

Sphere mapping

Sphere mapping represents the sphere of incident illumination as though it were seen in
the reflection of a reflective sphere through an orthographic camera. The texture image
can be created by approximating this ideal setup, or using a fisheye lens or via
prerendering a scene with a spherical mapping.

The spherical mapping suffers from limitations that detract from the realism of resulting
renderings. Because spherical maps are stored as azimuthal projections of the
environments they represent, an abrupt point of singularity (a “black hole” effect) is
visible in the reflection on the object where texel colors at or near the edge of the map are
distorted due to inadequate resolution to represent the points accurately. The spherical
mapping also wastes pixels that are in the square but not in the sphere.

The artifacts of the spherical mapping are so severe that it is effective only for viewpoints
near that of the virtual orthographic camera.

Cube mapping

A diagram depicting an apparent reflection being provided by cube mapped reflection.
The map is actually projected onto the surface from the point of view of the observer.
Highlights which in raytracing would be provided by tracing the ray and determining the
angle made with the normal, can be 'fudged', if they are manually painted into the texture
field (or if they already appear there depending on how the texture map was obtained),
from where they will be projected onto the mapped object along with the rest of the
texture detail.

Cube mapping and other polyhedron mappings address the severe distortion of sphere
maps. If cube maps are made and filtered correctly, they have no visible seams, and can
be used independent of the viewpoint of the often-virtual camera acquiring the map. Cube
and other polyhedron maps have since superseded sphere maps in most computer
graphics applications, with the exception of acquiring image-based lighting.

Generally, cube mapping uses the same skybox that is used in outdoor renderings. Cube
mapped reflection is done by determining the vector that the object is being viewed at.
This camera ray is reflected about the surface normal of where the camera vector
intersects the object. This results in the reflected ray which is then passed to the cube
map to get the texel which provides the radiance value used in the lighting calculation.
This creates the effect that the object is reflective.

Example of a three-dimensional model using cube mapped reflection

HEALPix mapping

HEALPix environment mapping is similar to the other polyhedron mappings, but can be
hierarchical, thus providing a unified framework for generating polyhedra that better
approximate the sphere. This allows lower distortion at the cost of increased computation.

History

Precursor work in texture mapping had been established by Edwin Catmull, with
refinements for curved surfaces by James Blinn, in 1974. Blinn went on to further refine
his work, developing environment mapping by 1976.

Gene Miller experimented with spherical environment mapping in 1982 at MAGI
Synthavision.

Wolfgang Heidrich introduced Paraboloid Mapping in 1998.

Emil Praun introduced Octahedron Mapping in 2003 .

Mauro Steigleder introduced Pyramid Mapping in 2005 .

Tien-Tsin Wong, et al. introduced the existing HEALPix mapping for rendering in 2006.

Reflection (Computer Graphics)

Ray traced model demonstrating specular reflection.

Reflection in computer graphics is used to emulate reflective objects like mirrors and
shiny surfaces.

Reflection is accomplished in a ray trace renderer by following a ray from the eye to the
mirror and then calculating where it bounces from, and continuing the process until no
surface is found, or a non-reflective surface is found. Reflection on a shiny surface like
wood or tile can add to the photorealistic effects of a 3D rendering.

 Polished - A Polished Reflection is an undisturbed reflection, like a mirror or
chrome.

 Blurry - A Blurry Reflection means that tiny random bumps on the surface of the
material cause the reflection to be blurry.

 Metallic - A reflection is Metallic if the highlights and reflections retain the color
of the reflective object.

 Glossy - This term can be misused. Sometimes it is a setting which is the opposite
of Blurry. (When "Glossiness" has a low value, the reflection is blurry.) However,
some people use the term "Glossy Reflection" as a synonym for "Blurred
Reflection." Glossy used in this context means that the reflection is actually
blurred.

Examples

Polished or Mirror reflection

Mirror on wall rendered with 100% reflection.

Mirrors are usually almost 100% reflective.

Metallic Reflection

The large sphere on the left is blue with its reflection marked as metallic. The large
sphere on the right is the same color but does not have the metallic property selected.

Normal, (non metallic), objects reflect light and colors in the original color of the object
being reflected.

Metallic objects reflect lights and colors altered by the color of the metallic object itself.

Blurry Reflection

The large sphere on the left has sharpness set to 100%. The sphere on the right has
sharpness set to 50% which creates a blurry reflection.

Many materials are imperfect reflectors, where the reflections are blurred to various
degrees due to surface roughness that scatters the rays of the reflections.

Glossy Reflection

The sphere on the left has normal, metallic reflection. The sphere on the right has the
same parameters, except that the reflection is marked as "glossy".

Chapter 15

Rendering (Computer Graphics)

An image created by using POV-Ray 3.6.

Rendering is the process of generating an image from a model (or models in what
collectively could be called a scene file), by means of computer programs. A scene file
contains objects in a strictly defined language or data structure; it would contain
geometry, viewpoint, texture, lighting, and shading information as a description of the
virtual scene. The data contained in the scene file is then passed to a rendering program
to be processed and output to a digital image or raster graphics image file. The term

"rendering" may be by analogy with an "artist's rendering" of a scene. Though the
technical details of rendering methods vary, the general challenges to overcome in
producing a 2D image from a 3D representation stored in a scene file are outlined as the
graphics pipeline along a rendering device, such as a GPU. A GPU is a purpose-built
device able to assist a CPU in performing complex rendering calculations. If a scene is to
look relatively realistic and predictable under virtual lighting, the rendering software
should solve the rendering equation. The rendering equation doesn't account for all
lighting phenomena, but is a general lighting model for computer-generated imagery.
'Rendering' is also used to describe the process of calculating effects in a video editing
file to produce final video output.

Rendering is one of the major sub-topics of 3D computer graphics, and in practice always
connected to the others. In the graphics pipeline, it is the last major step, giving the final
appearance to the models and animation. With the increasing sophistication of computer
graphics since the 1970s onward, it has become a more distinct subject.

Rendering has uses in architecture, video games, simulators, movie or TV special effects,
and design visualization, each employing a different balance of features and techniques.
As a product, a wide variety of renderers are available. Some are integrated into larger
modeling and animation packages, some are stand-alone, some are free open-source
projects. On the inside, a renderer is a carefully engineered program, based on a selective
mixture of disciplines related to: light physics, visual perception, mathematics and
software development.

In the case of 3D graphics, rendering may be done slowly, as in pre-rendering, or in real
time. Pre-rendering is a computationally intensive process that is typically used for movie
creation, while real-time rendering is often done for 3D video games which rely on the
use of graphics cards with 3D hardware accelerators.

Usage

When the pre-image (a wireframe sketch usually) is complete, rendering is used, which
adds in bitmap textures or procedural textures, lights, bump mapping and relative position
to other objects. The result is a completed image the consumer or intended viewer sees.

For movie animations, several images (frames) must be rendered, and stitched together in
a program capable of making an animation of this sort. Most 3D image editing programs
can do this.

Features

Image rendered with computer aided design.

A rendered image can be understood in terms of a number of visible features. Rendering
research and development has been largely motivated by finding ways to simulate these
efficiently. Some relate directly to particular algorithms and techniques, while others are
produced together.

 shading — how the color and brightness of a surface varies with lighting
 texture-mapping — a method of applying detail to surfaces
 bump-mapping — a method of simulating small-scale bumpiness on surfaces

 fogging/participating medium — how light dims when passing through non-clear
atmosphere or air

 shadows — the effect of obstructing light
 soft shadows — varying darkness caused by partially obscured light sources
 reflection — mirror-like or highly glossy reflection
 transparency (optics), transparency (graphic) or opacity — sharp transmission of

light through solid objects
 translucency — highly scattered transmission of light through solid objects
 refraction — bending of light associated with transparency
 diffraction — bending, spreading and interference of light passing by an object or

aperture that disrupts the ray
 indirect illumination — surfaces illuminated by light reflected off other surfaces,

rather than directly from a light source (also known as global illumination)
 caustics (a form of indirect illumination) — reflection of light off a shiny object,

or focusing of light through a transparent object, to produce bright highlights on
another object

 depth of field — objects appear blurry or out of focus when too far in front of or
behind the object in focus

 motion blur — objects appear blurry due to high-speed motion, or the motion of
the camera

 non-photorealistic rendering — rendering of scenes in an artistic style, intended to
look like a painting or drawing

Techniques

Many rendering algorithms have been researched, and software used for rendering may
employ a number of different techniques to obtain a final image.

Tracing every particle of light in a scene is nearly always completely impractical and
would take a stupendous amount of time. Even tracing a portion large enough to produce
an image takes an inordinate amount of time if the sampling is not intelligently restricted.

Therefore, four loose families of more-efficient light transport modelling techniques have
emerged: rasterization, including scanline rendering, geometrically projects objects in the
scene to an image plane, without advanced optical effects; ray casting considers the scene
as observed from a specific point-of-view, calculating the observed image based only on
geometry and very basic optical laws of reflection intensity, and perhaps using Monte
Carlo techniques to reduce artifacts; and ray tracing is similar to ray casting, but employs
more advanced optical simulation, and usually uses Monte Carlo techniques to obtain
more realistic results at a speed that is often orders of magnitude slower. The fourth type
of light transport techique, radiosity is not usually implemented as a rendering technique,
but instead calculates the passage of light as it leaves the light source and illuminates
surfaces. These surfaces are usually rendered to the display using one of the other three
techniques.

Most advanced software combines two or more of the techniques to obtain good-enough
results at reasonable cost.

Another distinction is between image order algorithms, which iterate over pixels of the
image plane, and object order algorithms, which iterate over objects in the scene.
Generally object order is more efficient, as there are usually fewer objects in a scene than
pixels.

Scanline rendering and rasterisation

Rendering of the European Extremely Large Telescope.

A high-level representation of an image necessarily contains elements in a different
domain from pixels. These elements are referred to as primitives. In a schematic drawing,
for instance, line segments and curves might be primitives. In a graphical user interface,
windows and buttons might be the primitives. In 3D rendering, triangles and polygons in
space might be primitives.

If a pixel-by-pixel (image order) approach to rendering is impractical or too slow for
some task, then a primitive-by-primitive (object order) approach to rendering may prove
useful. Here, one loops through each of the primitives, determines which pixels in the
image it affects, and modifies those pixels accordingly. This is called rasterization, and
is the rendering method used by all current graphics cards.

Rasterization is frequently faster than pixel-by-pixel rendering. First, large areas of the
image may be empty of primitives; rasterization will ignore these areas, but pixel-by-
pixel rendering must pass through them. Second, rasterization can improve cache
coherency and reduce redundant work by taking advantage of the fact that the pixels

occupied by a single primitive tend to be contiguous in the image. For these reasons,
rasterization is usually the approach of choice when interactive rendering is required;
however, the pixel-by-pixel approach can often produce higher-quality images and is
more versatile because it does not depend on as many assumptions about the image as
rasterization.

The older form of rasterization is characterized by rendering an entire face (primitive) as
a single color. Alternatively, rasterization can be done in a more complicated manner by
first rendering the vertices of a face and then rendering the pixels of that face as a
blending of the vertex colors. This version of rasterization has overtaken the old method
as it allows the graphics to flow without complicated textures (a rasterized image when
used face by face tends to have a very block-like effect if not covered in complex
textures; the faces aren't smooth because there is no gradual color change from one
primitive to the next). This newer method of rasterization utilizes the graphics card's
more taxing shading functions and still achieves better performance because the simpler
textures stored in memory use less space. Sometimes designers will use one rasterization
method on some faces and the other method on others based on the angle at which that
face meets other joined faces, thus increasing speed and not hurting the overall effect.

Ray casting

In ray casting the geometry which has been modeled is parsed pixel by pixel, line by
line, from the point of view outward, as if casting rays out from the point of view. Where
an object is intersected, the color value at the point may be evaluated using several
methods. In the simplest, the color value of the object at the point of intersection becomes
the value of that pixel. The color may be determined from a texture-map. A more
sophisticated method is to modify the colour value by an illumination factor, but without
calculating the relationship to a simulated light source. To reduce artifacts, a number of
rays in slightly different directions may be averaged.

Rough simulations of optical properties may be additionally employed: a simple
calculation of the ray from the object to the point of view is made. Another calculation is
made of the angle of incidence of light rays from the light source(s), and from these as
well as the specified intensities of the light sources, the value of the pixel is calculated.
Another simulation uses illumination plotted from a radiosity algorithm, or a combination
of these two.

Raycasting is primarily used for realtime simulations, such as those used in 3D computer
games and cartoon animations, where detail is not important, or where it is more efficient
to manually fake the details in order to obtain better performance in the computational
stage. This is usually the case when a large number of frames need to be animated. The
resulting surfaces have a characteristic 'flat' appearance when no additional tricks are
used, as if objects in the scene were all painted with matte finish.

Ray tracing

Spiral Sphere and Julia, Detail, a computer-generated image created by visual artist
Robert W. McGregor using only POV-Ray 3.6 and its built-in scene description
language.

Ray tracing aims to simulate the natural flow of light, interpreted as particles. Often, ray
tracing methods are utilized to approximate the solution to the rendering equation by
applying Monte Carlo methods to it. Some of the most used methods are Path Tracing,
Bidirectional Path Tracing, or Metropolis light transport, but also semi realistic methods
are in use, like Whitted Style Ray Tracing, or hybrids. While most implementations let
light propagate on straight lines, applications exist to simulate relativistic spacetime
effects.

In a final, production quality rendering of a ray traced work, multiple rays are generally
shot for each pixel, and traced not just to the first object of intersection, but rather,
through a number of sequential 'bounces', using the known laws of optics such as "angle
of incidence equals angle of reflection" and more advanced laws that deal with refraction
and surface roughness.

Once the ray either encounters a light source, or more probably once a set limiting
number of bounces has been evaluated, then the surface illumination at that final point is
evaluated using techniques described above, and the changes along the way through the
various bounces evaluated to estimate a value observed at the point of view. This is all
repeated for each sample, for each pixel.

In distribution ray tracing, at each point of intersection, multiple rays may be spawned. In
path tracing, however, only a single ray or none is fired at each intersection, utilizing the
statistical nature of Monte Carlo experiments.

As a brute-force method, ray tracing has been too slow to consider for real-time, and until
recently too slow even to consider for short films of any degree of quality, although it has
been used for special effects sequences, and in advertising, where a short portion of high
quality (perhaps even photorealistic) footage is required.

However, efforts at optimizing to reduce the number of calculations needed in portions of
a work where detail is not high or does not depend on ray tracing features have led to a
realistic possibility of wider use of ray tracing. There is now some hardware accelerated
ray tracing equipment, at least in prototype phase, and some game demos which show use
of real-time software or hardware ray tracing.

Radiosity

Radiosity is a method which attempts to simulate the way in which directly illuminated
surfaces act as indirect light sources that illuminate other surfaces. This produces more
realistic shading and seems to better capture the 'ambience' of an indoor scene. A classic
example is the way that shadows 'hug' the corners of rooms.

The optical basis of the simulation is that some diffused light from a given point on a
given surface is reflected in a large spectrum of directions and illuminates the area around
it.

The simulation technique may vary in complexity. Many renderings have a very rough
estimate of radiosity, simply illuminating an entire scene very slightly with a factor
known as ambiance. However, when advanced radiosity estimation is coupled with a high
quality ray tracing algorithim, images may exhibit convincing realism, particularly for
indoor scenes.

In advanced radiosity simulation, recursive, finite-element algorithms 'bounce' light back
and forth between surfaces in the model, until some recursion limit is reached. The
colouring of one surface in this way influences the colouring of a neighbouring surface,
and vice versa. The resulting values of illumination throughout the model (sometimes
including for empty spaces) are stored and used as additional inputs when performing
calculations in a ray-casting or ray-tracing model.

Due to the iterative/recursive nature of the technique, complex objects are particularly
slow to emulate. Prior to the standardization of rapid radiosity calculation, some graphic
artists used a technique referred to loosely as false radiosity by darkening areas of texture
maps corresponding to corners, joints and recesses, and applying them via self-
illumination or diffuse mapping for scanline rendering. Even now, advanced radiosity
calculations may be reserved for calculating the ambiance of the room, from the light
reflecting off walls, floor and ceiling, without examining the contribution that complex
objects make to the radiosity—or complex objects may be replaced in the radiosity
calculation with simpler objects of similar size and texture.

Radiosity calculations are viewpoint independent which increases the computations
involved, but makes them useful for all viewpoints. If there is little rearrangement of
radiosity objects in the scene, the same radiosity data may be reused for a number of
frames, making radiosity an effective way to improve on the flatness of ray casting,
without seriously impacting the overall rendering time-per-frame.

Because of this, radiosity is a prime component of leading real-time rendering methods,
and has been used from beginning-to-end to create a large number of well-known recent
feature-length animated 3D-cartoon films.

Sampling and filtering

One problem that any rendering system must deal with, no matter which approach it
takes, is the sampling problem. Essentially, the rendering process tries to depict a
continuous function from image space to colors by using a finite number of pixels. As a
consequence of the Nyquist–Shannon sampling theorem, any spatial waveform that can
be displayed must consist of at least two pixels, which is proportional to image
resolution. In simpler terms, this expresses the idea that an image cannot display details,
peaks or troughs in color or intensity, that are smaller than one pixel.

If a naive rendering algorithm is used without any filtering, high frequencies in the image
function will cause ugly aliasing to be present in the final image. Aliasing typically
manifests itself as jaggies, or jagged edges on objects where the pixel grid is visible. In
order to remove aliasing, all rendering algorithms (if they are to produce good-looking
images) must use some kind of low-pass filter on the image function to remove high
frequencies, a process called antialiasing.

Optimization

Optimizations used by an artist when a scene is being developed

Due to the large number of calculations, a work in progress is usually only rendered in
detail appropriate to the portion of the work being developed at a given time, so in the
initial stages of modeling, wireframe and ray casting may be used, even where the target
output is ray tracing with radiosity. It is also common to render only parts of the scene at

high detail, and to remove objects that are not important to what is currently being
developed.

Common optimizations for real time rendering

For real-time, it is appropriate to simplify one or more common approximations, and tune
to the exact parameters of the scenery in question, which is also tuned to the agreed
parameters to get the most 'bang for the buck'.

Academic core

The implementation of a realistic renderer always has some basic element of physical
simulation or emulation — some computation which resembles or abstracts a real
physical process.

The term "physically-based" indicates the use of physical models and approximations
that are more general and widely accepted outside rendering. A particular set of related
techniques have gradually become established in the rendering community.

The basic concepts are moderately straightforward, but intractable to calculate; and a
single elegant algorithm or approach has been elusive for more general purpose
renderers. In order to meet demands of robustness, accuracy and practicality, an
implementation will be a complex combination of different techniques.

Rendering research is concerned with both the adaptation of scientific models and their
efficient application.

The rendering equation

This is the key academic/theoretical concept in rendering. It serves as the most abstract
formal expression of the non-perceptual aspect of rendering. All more complete
algorithms can be seen as solutions to particular formulations of this equation.

Meaning: at a particular position and direction, the outgoing light (Lo) is the sum of the
emitted light (Le) and the reflected light. The reflected light being the sum of the
incoming light (Li) from all directions, multiplied by the surface reflection and incoming
angle. By connecting outward light to inward light, via an interaction point, this equation
stands for the whole 'light transport' — all the movement of light — in a scene.

The Bidirectional Reflectance Distribution Function

The Bidirectional Reflectance Distribution Function (BRDF) expresses a simple
model of light interaction with a surface as follows:

Light interaction is often approximated by the even simpler models: diffuse reflection and
specular reflection, although both can be BRDFs.

Geometric optics

Rendering is practically exclusively concerned with the particle aspect of light physics —
known as geometric optics. Treating light, at its basic level, as particles bouncing around
is a simplification, but appropriate: the wave aspects of light are negligible in most
scenes, and are significantly more difficult to simulate. Notable wave aspect phenomena
include diffraction (as seen in the colours of CDs and DVDs) and polarisation (as seen in
LCDs). Both types of effect, if needed, are made by appearance-oriented adjustment of
the reflection model.

Visual perception

Though it receives less attention, an understanding of human visual perception is
valuable to rendering. This is mainly because image displays and human perception have
restricted ranges. A renderer can simulate an almost infinite range of light brightness and
color, but current displays — movie screen, computer monitor, etc. — cannot handle so
much, and something must be discarded or compressed. Human perception also has
limits, and so does not need to be given large-range images to create realism. This can
help solve the problem of fitting images into displays, and, furthermore, suggest what
short-cuts could be used in the rendering simulation, since certain subtleties won't be
noticeable. This related subject is tone mapping.

Mathematics used in rendering includes: linear algebra, calculus, numerical mathematics,
signal processing, and Monte Carlo methods.

Rendering for movies often takes place on a network of tightly connected computers
known as a render farm.

The current state of the art in 3-D image description for movie creation is the Mental Ray
scene description language designed at mental images and the RenderMan shading
language designed at Pixar. (compare with simpler 3D fileformats such as VRML or
APIs such as OpenGL and DirectX tailored for 3D hardware accelerators).

Other renderers (including proprietary ones) can and are sometimes used, but most other
renderers tend to miss one or more of the often needed features like good texture filtering,
texture caching, programmable shaders, highend geometry types like hair, subdivision or
nurbs surfaces with tesselation on demand, geometry caching, raytracing with geometry
caching, high quality shadow mapping, speed or patent-free implementations. Other
highly sought features these days may include IPR and hardware rendering/shading.

	Table of Contents
	Introduction
	Chapter 1- Anisotropic Filtering & Ambient Occlusion
	Chapter 2 - Binary Space Partitioning
	Chapter 3 - Bump Mapping
	Chapter 4 - Global Illumination & Catmull–Clark Subdivision Surface
	Chapter 5 - Level of Detail

	Chapter 6 - Non-Uniform Rational B-Spline
	Chapter 7 - Normal Mapping & Mipmap
	Chapter 8 - Particle System & Painter's Algorithm
	Chapter 9 - Phong Shading
	Chapter 10 - Path Tracing
	Chapter 11 - Photon Mapping
	Chapter 12 -3D Projection
	Chapter 13 - Radiosity (3D Computer Graphics)
	Chapter 14 - Reflection Mapping & Reflection (Computer Graphics)
	Chapter 15 - Rendering (Computer Graphics)

